Analysis of the Experience of Carbon Nanostructured Implants Use in Traumatology and Orthopaedics

Cover Page

Cite item

Full Text

Abstract

Analysis of the carbon nanostructured implants (CNI) safety and efficacy for the treatment of bone pathology was performed at different clinics of the Russian Federation. Devices showed their efficacy at substitution of intervertebral disc and vertebral body defects as well as at plasty of long bone defects of various etiology. The rate of effect absence did not exceed 6.1%. No serious adverse effects were recorded. It is concluded that CNI possesses the number of characteristics (osteoinduction, bioinertia, safety) that allow using it in traumatology and orthopaedics.

About the authors

D. Yu Borzunov

G.A. Ilizarov Scientific Center “Restorative Traumatology and Orthopaedics”, Kurgan

доктор мед. наук, зам. директора по научной работе РНЦ «ВТО» Курган

V. I Shevtsov

OOO “NanoTechMed Plus”, Velikiy Novgorod

доктор мед. наук, профессор, консультант по медицинским вопросам ООО «НаноТехМед Плюс» Великий Новгород

M. V Stogov

G.A. Ilizarov Scientific Center “Restorative Traumatology and Orthopaedics”, Kurgan

доктор биол. наук, вед. науч. сотр. лаборатории биохимии РНЦ «ВТО» Курган

E. N Ovchinnikov

G.A. Ilizarov Scientific Center “Restorative Traumatology and Orthopaedics”, Kurgan

Email: omu00@list.ru
канд. биол. наук, ученый секретарь РНЦ «ВТО»; Тел.: 8 (3522) 45-27-10. 640014, Курган, ул. М. Ульяновой, д. 6

References

  1. Agrawal C.M. Reconstructing the human body using biomaterials. JOM: J. Miner. Metals Mater. Soc. 1998; 50 (1): 31-5.
  2. Kokubo T., Kim H.M., Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003; 24 (13): 2161-75.
  3. Li Y. Synthesis and characterization of bone-like minerals: Macroscopic approach and microscopic emulation. Leiden; 1994.
  4. Pihlajamäki H.K., Salminen S.T., Tynninen O., Böstman O.M., Laitinen O. Tissue restoration after implantation of polyglycolide, polydioxanone, polylevolactide, and metallic pins in cortical bone: an experimental study in rabbits. Calcif. Tissue Int. 2010; 87 (1): 90-8.
  5. Bhat A., Dreifke M.B., Kandimalla Y., Gomez C., Ebraheim N.A., Jayasuriya A.C. Evaluation of cross-linked chitosan microparticles for bone regeneration. J. Tissue Eng. Regen. Med. 2010; 4 (7): 532-42.
  6. Calvo-Guirado J.L., Maté-Sánchez J.E., Delgado-Ruiz R.A., Romanos G.E., De Aza-Moya P., Velázquez P. Bone neo-formation and mineral degradation of 4Bone.® Part II: histological and histomorphometric analysis in critical size defects in rabbits. Clin. Oral Implants Res. 2015; 26 (12): 1402-6. doi: 10.1111/clr.12465.
  7. Yang J., Chen H.J., Zhu X.D., Vaidya S., Xiang Z., Fan Y.J. et al. Enhanced repair of a critical-sized segmental bone defect in rabbit femur by surface microstructured porous titanium. J. Mater. Sci. Mater. Med. 2014; 25 (7): 1747-56.
  8. Yang X., Wang D., Liang Y., Yin H., Zhang S., Jiang T. et al. A new implant with solid core and porous surface: the biocompatability with bone. J. Biomed. Mater. Res. A. 2014; 102 (7): 2395-2407.
  9. Путляев В.И. Современные биокерамические материалы. Соровский образовательный журнал. 2004; 1: 44-9.
  10. Demirkiran H. Bioceramics for osteogenesis, molecular and cellular advances. Adv. Exp. Med. Biol. 2012; 760: 134-47.
  11. Junker R., Dimakis A., Thoneick M., Jansen J.A. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin. Oral Implants Res. 2009; 20 (Suppl 4): 185-206.
  12. Гордеев С.К. Углеродные нанокомпозиционные материалы из наноалмаза: получение и свойства. Сверхтвердые материалы. 2002; 6: 60-7.
  13. Benson J. Elemental carbon as a biomaterial. J. Biomed. Material Res. 1971; 5 (44): 44-6.
  14. Guiral J., Ferrández L., Curto J.M., Basora J., Vicente P. Carbon and polyester fibers as a scaffold for bone repair. Studies of segmentary implants in the rabbit radius. Acta Orthop. Scand. 1990; 61 (1): 16-20.
  15. Curtin W., Reville W., Heapes M., Lyons J., Muckle D. The chondrogenic potential of carbon fiber and carbon fiber periosteum implants: an ultrastructural study in the rabbit. Osteoarthritis Cartilage. 1994; 2 (4): 253-8.
  16. Boriani S., Bandiera S., Biagini R., De Iure F., Giunti A. The use of the carbon-fiber reinforced modular implant for the reconstruction of the anterior column of the spine. A clinical and experimental study conducted on 42 cases. Chir. Organi Mov. 2000; 85 (4): 309-35.
  17. Qiu Y.S., Shahgaldi B.F., Revell W.J., Heatley F.W. Evaluation of Gateshead carbon fibre rod as an implant material for repair of osteochondral defects: a morphological and mechanical study in the rabbit knee. Biomaterials. 2002; 23 (19): 3943-55.
  18. Castranova V., Schulte P.A., Zumwalde R.D. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc. Chem. Res. 2013; 46 (3): 642-9.
  19. Liao C.Z., Li K., Wong H.M., Tong W.Y., Yeung K.W., Tjong S.C. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013; 33 (3): 1380-8.
  20. Wujcik E.K., Monty C.N. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013; 5 (3): 233-49.
  21. Kenar H., Akman E., Kacar E., Demir A., Park H., Abdul-Khaliq H. et al. Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation. Colloids Surf. B. Biointerfaces. 2013; 108: 305-12.
  22. Беляков М.В., Гусева В.Н., Мушкин А.Ю., Виноградова Т.И., Маничева О.А., Гордеев С.К. Использование многофункциональных углеродных имплантатов в хирургии воспалительных заболеваний позвоночника. Хирургия позвоночника. 2010; 1: 57-61.
  23. Govindaraj S., Costantino P.D., Friedman C.D. Current use of bone substitutes in maxillofacial surgery. Facial Plast. Surg. 1999; 15 (1): 73-81.
  24. Baker D., Kadambande S.S., Alderman P.M. Carbon fibre plates in the treatment of femoral periprosthetic fractures. Injury. 2004; 35 (6): 596-8.
  25. Vandrovcová M., Bačáková L. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol. Res. 2011; 60 (3): 403-17.
  26. Скрябин В.Л., Денисов А.С. Использование углеродных наноструктурных имплантатов для замещения пострезекционных дефектов при опухолевых и кистозных поражениях костей (клинические рекомендации). Пермь: ПГМА; 2014.
  27. Сергеев К.С. Межтеловой спондилодез с использованием углеродных наноструктурных имплантатов при травмах позвоночного столба (клинические рекомендации). Тюмень: ТГМА; 2014.
  28. Сергеев К.С., Гринь А.А. Использование углеродных наноструктурных имплантатов для замещения посттравматических дефектов при внутрисуставных переломах проксимального отдела большеберцовой кости (клинические рекомендации). Тюмень: ТГМА; 2014.
  29. Гусева В.Н., Беляков М.В., Мушкин А.Ю., Виноградова Т.И., Бурлаков С.В., Олейник В.В. и др. Передний спондилодез с применением углеродных наноструктурных имплантатов (клинические рекомендации). СПб: Санкт-Петербургский НИИ фтизиопульмонологии; 2014.
  30. Шевцов В.И., Шатохин В.Д., Пушкин С.Ю. Опорная пластика дефектов костей с использованием наноструктурных имплантатов (клинические рекомендации). Самара: Самарская ОКБ; 2014.
  31. Шевцов В.И., Белов И.М., Беляков М.В., Бурлаков С.В., Вишневский А.А., Волокитина Е.А. и др. Результаты практического применения, клинико-экономической оценки, мониторинга безопасности углеродных наноструктурных имплантатов. Великий Новгород: «НТМ+»; 2014.
  32. Шевцов В.И., Мушкин А.Ю., Сергеев К.С., Скрябин В.Л., Шатохин В.Д. Методические рекомендации по менеджменту рисков применения имплантатов углеродных наноструктурных. Великий Новгород: «НТМ+»; 2014.

Copyright (c) 2016 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies