Full -Function Restoration of Achilles Tendon with Nanofibrous Implant (experimental study)

Cover Page

Cite item

Full Text

Abstract

Creation of implants for the restoration of ligaments and tendons in their complete/massive injury is an urgent task. The efficacy of the restoration of completely resected Achilles tendons after implantation of a new material consisting of absorbable pledged threads Dar-Vin USP 5/0 and conductive nonofibrous scaffolds of polyhydroxybutyrate placed around the threads into the zone of defect was studied in Wistar rats. Either nanofibrous implant (experiment) or pledged threads (control 1) were placed into the zone of completely resected Achilles tendon (control 1), or the postresection wound was sutured without placement of any material (control 2). It was stated that from 2nd to 13th week after implantation of nanofibrous implant the animals from the experimental group used their hind paws in full volume. In control groups 1 and 2 the animals moved with difficulties. In the experimental group of animals in 6 and 13 weeks after implantation a soft tissue regenerate connecting the calcanean tuber and gastrocnemius muscle was present with the absence of gastrocnemius muscle contracture as compared with the control groups. Histologic examination showed the similarity of the regenerate on nanofibrous implant with the native Achilles tendon. Thus, the suggested implant ensured functional and morphologic restoration of totally resected Achilles tendon in rats and can be considered as a perspective prototype of new materials initiating effective regeneration of ligaments and tendons in their massive injuries.

About the authors

A. S Senotov

Institute of Theoretical and Experimental Biophysics

науч. сотр. лаборатории фармакологической регуляции клеточной резистентности ИТЭБ РАН Pushchino, Russia

A. A Ol’khov

Plekhanov Russian University of Economics

канд. техн. наук, старший науч. сотр. лаборатории перспективных материалов и технологий РЭУ им. Г.В. Плеханова, старший науч. сотр. лаборатории диффузионных явлений в полимерных системах ИХФ им. Н.Н. Семенова Moscow, Russia

E. D Sklyanchuk

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

доктор мед. наук, профессор каф. травматологии, ортопедии и военно-полевой хирургии МГМСУ им. А.И. Евдокимова, зав. ортопедическим отделением Дорожной клинической больницы им. Н.А. Семашко на станции Люблино ОАО «РЖД» Moscow, Russia

I. S Fadeeva

Institute of Theoretical and Experimental Biophysics

канд. биол. наук, старший науч. сотр. лаборатории тканевой инженерии ИТЭБ РАН Pushchino, Russia

R. S Fadeev

Institute of Theoretical and Experimental Biophysics

канд. биол. наук, старший науч. сотр. лаборатории фармакологической регуляции клеточной резистентности ИТЭБ РАН Pushchino, Russia

N. I Fesenko

Pushchino State Institute of Natural Sciences

канд. биол. наук, доцент Учебного центра биофизики и биомедицины ПущГЕНИ Pushchino, Russia

A. A Prosvirin

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

ассистент кафедры травматологии, ортопедии и военно-полевой хирургии МГМСУ им. А.И. Евдокимова Moscow, Russia

M. V Lekishvili

N.N. Priorov Central Institute of Traumatology and Orthopaedics; Institute of Applied Economic Research

доктор мед. наук, зав. лабораторией «Тканевой банк» ЦИТО им. Н.Н. Приорова Moscow, Russia

V. V Gur’ev

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

доктор мед. наук, профессор каф. травматологии, ортопедии и военно-полевой хирургии МГМСУ им. А.И. Евдокимова, рук. Центра травматологии и ортопедии Дорожной клинической больницы им. Н.А. Семашко на станции Люблино ОАО «РЖД» Moscow, Russia

A. L Iordanskiy

Semenov Institute of Chemical Physics

доктор хим. наук, профессор, зав. лабораторией диффузионных явлений в полимерных системах ИХФ им. Н.Н. Семенова Moscow, Russia

V. S Akatov

Institute of Theoretical and Experimental Biophysics

Email: akatov.vladimir@gmail.com
доктор физ.-мат. наук, профессор, зав. лабораторией тканевой инженерии ИТЭБ РАН; Тел.: 8 (496) 773-49-52 Pushchino, Russia

References

  1. Meier Bürgisser G., Buschmann J. History and performance of implant materials applied as peritendinous antiadhesives. J. Biomed. Mater. Res B Appl. Biomater. 2015; 103 (1): 212-8.
  2. Doroski D.M., Brink K.S., Temenoff J.S. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials. 2007; 28 (2): 187-202.
  3. Cooper J.A., Lu H.H., Ko F.K., Freeman J.W., Laurencin C.T. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005; 26 (13): 1523-32.
  4. Jaibaji M. Advances in the biology of zone II flexor tendon healing and adhesion formation. Ann. Plast. Surg. 2000; 45: 83-92.
  5. Склянчук Е.Д., Ольхов А.А., Акатов В.С., Гурьев В.В., Иорданский А.Л., Филатов Ю.Н. и др. Способ повышения регенерационного потенциала имплантатов для восстановительной хирургии соединительной ткани. Патент на изобретение РФ №2561830 от 10.09.2015 г.
  6. Ольхов А.А., Склянчук Е.Д., Аббасов Т.А., Акатов В.С., Фадеева И.С., Фадеев Р.С. и др. Регенерационный потенциал нановолоконного сухожильного имплантата из полигидроксибутирата. Технологии живых систем. 2015; 12 (2): 3-11.
  7. Ольхов А.А., Староверова О.В., Гурьев В.В., Аббасов Т.А., Орлов Н.А., Ищенко А.А. и др. Матриксы для тканевой инженерии на основе модифицированных нановолокон поли-(3-гидроксибутирата), полученных методом электроформования. Физика волокнистых материалов: структура, свойства, наукоемкие технологии и материалы (SMARTEX). 2016; 1 (1): 57-68.
  8. Жаркова И.И., Староверова О.В., Воинова В.В., Андреева Н.В., Шушкевич А.М., Склянчук Е.Д. и др. Биосовместимость матриксов для тканевой инженерии из поли-3-оксибутирата и его композитов, полученных методом электроформования. Биомедицинская химия. 2014; 60 (5): 553-60.
  9. Корнилов Д.Н., Попов И.В., Раевская Л.Ю., Гольдберг О.А., Лепехова С.А. Реконструктивная операция на ахилловом сухожилии крысы: Этапы оперативного вмешательства, топографо-анатомическое обоснование. Сибирский медицинский журнал. 2014; 125 (2): 35-8.
  10. ГОСТ ISO 10993-1-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследование».
  11. ГОСТ ISO 10993-6-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 6. Исследования местного действия после имплантации».

Copyright (c) 2016 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies