TANTALUM BASED IMPLANTS: EXPERIMENTAL AND CLINICAL ASPECTS OF APPLICATION


Cite item

Full Text

Abstract

The review tries to generalize the data on the efficacy of tantalum based implants’ (including the components of endoprostheses). At present the information on both experimental (on animals) and clinical results of such implants application is available. It is stated that tantalum coating, especially the one treated with alkaline solutions in their production, possesses marked osteoinductive properties. In presence of additional hydroxyapatite or octacalcium phosphate coatings the latter play the role of peculiar “centers of osteogenesis” around which the chemical growth of the future bone mineral matrix takes place that is subjected to remodeling subsequently. It is also shown that tantalum based porous implants are capable of osteointegration and biological fixation with growth of new bony tissue in the pores and trabeculae of the implant and no fibrotic changes at bone-implant interface are detected. Histologic and biochemical data confirm the efficacy of osteogenesis on such implants. Despite certain encouraging results the clinical use of such implants in patients of older age groups requires an additional study.

About the authors

D. S. Gorbatyuk

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: naddis@mail.ru

S. V. Kolesov

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

M. L. Sazhnev

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

V. S. Pereverzev

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

A. I. Kaz’min

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

References

  1. Bobyn J., Poggie R., Krygier J. et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. J. Bone Joint Surg. 2004; 86-A Suppl 2: 123-9.
  2. Bobyn J., Stackpool G., Hacking S. et al. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 1999; 81 (5): 907-14.
  3. Bobyn J., Toh K., Hacking S. et al. Tissue response to porous tantalum acetabular cups: a canine model. J. Arthroplasty. 1999; 14 (4): 347-54.
  4. Bobyn J., Pillar R., Cameron H., Weatherly G. The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 1980; (150): 263-70.
  5. Bobyn J., Tanzer M., Miller J. Fundamental principles of biologic fixation. In: Reconstructive surgery of the joints. New York: Churchill Livingstone; 1996: 75-94.
  6. Cameron H., Pillar R., Macnab I. The rate of bone ingrowth into porous metal. J. Biomed. Mater. Res. 1976; 10: 295-302.
  7. Galante J., Rostocker W., Lueck R., Ray R. Sintered fiber metal composites as a basis for attachment of implants to bone. J. Bone Joint Surg. Am. 1971; 53 (1): 101-14.
  8. Pilliar R. Powder metal-made orthopaedic implants with porous surface for fixation by tissue ingrowth. Clin. Orthop. Relat. Res. 1983; (176): 42-51.
  9. Plenk H.J., Pfluger G., Schider S. et al. The current status of uncemented tantalum and niobium femoral endoprostheses. In: Morscher E., ed. The cementless fixation of hip endoprostheses. Berlin: Springer-Verlag; 1984: 174-7.
  10. Spector M. Bone ingrowth into porous metals. In: Biocompatibility of orthopaedic implants. CRC Press; 1982: 89-128.
  11. Stein T., Armand C., Bobyn J. et al. Quantitative histological comparison of bone growth into titanium and cobaltchromium porous coated canine implants. Orthop. Trans. 1991; 15: 178.
  12. Lewallen E.A., Riesler S.M., Bonin C.A. et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng. Part B Rev. 2015; 21 (2): 218-30. doi: 10.1089/ten. TEB.2014.0333.
  13. LaPrade R.F., Botker J.C. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy. 2004; 20 (7): e69-e73. doi: 10.1016/j.arthro.2004.06.022.
  14. Devine J.G. Bone grafting techniques in idiopathic scoliosis: a confirmation that allograft is as good as autograft but dispels the purported pain associated with the iliac crest bone graft harvest. Spine (Phila Pa 1976). 2013; 13 (5): 530-1. doi: 10.1016/j.spinee.2013.02.047
  15. Cartwright E.J., Prabhu R.M., Zinderman C.E. et al.; Food and Drug Administration Tissue Safety Team Investigators. Transmission of Elizabethkingia meningoseptica (formerly Chryseobacterium meningosepticum) to tissue-allograft recipients: a report of two cases. J. Bone Joint Surg. Am. 2010; 92 (6): 1501-6. doi: 10.2106/JBJS.I.00502.
  16. Holzapfel B.M., Reichert J.C., Schantz J.T. et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 2013; 65 (4): 581-603. doi: 10.1016/j.addr.2012.07.009.
  17. Bailey O.T., Ingraham F.D., Weadon P.S., Susen A.F. Tissue reactions to powdered tantalum in the central nervous system. J. Neurosurg. 1952; 9 (1): 83-92. doi: 10.3171/ jns.1952.9.1.0083.
  18. Burke G. The corrosion of metals in tissues and an introduction to tantalum. Can. Med. Assoc. J. 1940; 43 (2): 125-8.
  19. Carney H. An experimental study with tantalum. Proc. Soc. Exp. Biol. Med. 1942; 51: 147-8.
  20. Robertson R., Peacher W. The use of tantalum foil in the subdural space. J. Neurosurg. 1996; 17: 31-5.
  21. Aronson A., Jonsson N., Alberius P. Tantalum markers in radiography: an assessment of tissue reactions. Skelet. Radiol. 1985; 14 (3): 207-11.
  22. Black J. Biological performance of tantalum. Clin. Mater. 1994; 16 (3): 167-73.
  23. Brown M., Carden J., Coleman R. et al. Magnetic field effects on surgical ligation clips. Magn. Reson. Imaging. 1987; 5: 443-53.
  24. Johnson P.F., Bernstein J.J, Hunter G. et al. An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology and histology. J. Biomed. Mater. Res. 1977; 11 (5): 637-56. doi: 10.1002/ jbm.820110502.
  25. Pudenz R.The repair of cranial defects with tantalum: an experimental study. J. Am. Med. Assoc. 1943; 121: 478-81.
  26. Spurling R. The use of tantalum wire and foil in the repair of peripheral nerves. Surg. Clin. North Am. 1943; 23: 1491-504.
  27. Tegtmeyer C.J., Smith N.J., El-Mahdi A.M. et al. The value of tantalum powder as a contrast medium in laryngography. Can. J. Otolaryngol. 1975; 4 (1): 81-5.
  28. Findlay D.M., Welldon K., Atkins G.J. et al. The proliferation and phenotypic expression of human osteoblasts on tantalum metal. Biomaterials. 2004; 25 (12): 2215-27.
  29. Friedman R.J., Black J., Galante J.O. et al. Current concepts in orthopaedic biomaterials and implant fixation. Instr. Course Lect. 1994; 43: 233-55.
  30. Alberius P. Bone reactions to tantalum markers: a scanning electron microscopic study. Acta Anat. (Basel). 1983; 115 (4): 310-8.
  31. Zardiackas L.D., Parsell D.E., Dillon L.D et al. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. 2001; 58 (2): 180-7.
  32. Kokubo T., Kim H.M., Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003; 24 (13): 2161-75.
  33. Levine B.R., Sporer S., Poggie R.A. et al. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006; 27 (27): 4671-81.
  34. Miyaza T., Kim H.M., Kokubo T. et al. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials. 2002; 23 (3): 827-32.
  35. Zhang Y., Ahn P., Fitzpatrick D. et al. Interfacial frictional behavior: Cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J. Musculoskelet. Res. 1999; 3: 245-51.
  36. CollierJ.P.,MayorM.B.,ChaeJ.C.etal.Macroscopicandmicroscopic evidence of prosthetic fixation with porous-coated materials. Clin. Orthop. Relat. Res. 1988; (235): 173-80.
  37. Cook S.D., Barrack R.L., Thomas K.A., Haddad R.J. Jr. Quantitative analysis of tissue growth into human porous total hip components. J. Arthroplasty. 1988; 3 (3): 249-62.
  38. Engh C.A., Hooten J.P. Jr, Zettl-Schaffer K.F. et al. Evaluation of bone ingrowth in proximally and extensively porouscoated anatomic medullary locking prostheses retrieved at autopsy. J. Bone Joint Surg. Am. 1995; 77 (6): 903-10.
  39. Engh C.A., Zettl-Schaffer K.A., Kukita Y. et al. Histological and radiographic assessment of well functioning porouscoated acetabular components: a human postmortem retrieval study. J. Bone Joint Surg. Am. 1993; 75 (6): 814-24.
  40. Pidhorz L.E., Urban R.M., Jacobs J.J. et al. A quantitative study of bone and soft tissues in cementless porouscoated acetabular components retrieved at autopsy. J. Arthroplasty. 1993; 8 (2): 213-25.
  41. Balla V.K., Banerjee S., Bose S., Bandyopadhyay A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010; 6 (6): 2329-34. doi: 10.1016/j.actbio.2009.11.021.
  42. Paganias C.G., Tsakotos G.A., Koutsostathis S.D., Macheras G.A Osseous integration in porous tantalum implants. Indian J. Orthop. 2012; 46 (5): 505-13. doi: 10.4103/00195413.101032
  43. Høy K., Büenger C., Niederman B. et al. Transforaminal lumbar interbody fusion (TLIF) versus posterolateral instrumented fusion (PLF) in degenerative lumbar disorders: a randomized clinical trial with 2-year follow-up. Eur. Spine J. 2013; 22 (9): 2022-9. doi: 10.1007/s00586013-2760-2.
  44. Krygier J., Bobyn J., Poggie R., Cohen R. Mechanical characterisation of a new porous tantalum biomaterial for orthopaedic reconstruction. SIROT. Sydney; 1999.
  45. Lequin M.B., Verbaan D., Bouma G.J. Posterior lumbar interbody fusion with stand-alone Trabecular Metal cages for repeatedly recurrent lumbar disc herniation and back pain. J. Neurosurg. Spine. 2014; 20 (6): 617-22. doi: 10.3171/2014.2.SPINE13548.
  46. Loefgren H., Engquist M., Hoffmann P. et al. Clinical and radiological evaluation of trabecular metal and the Smith–Robinson technique in anterior cervical fusion for degenerative disease: prospective, randomized, controlled study with 2-year follow-up. Eur. Spine J. 2010; 19 (3): 464-73. doi: 10.1007/s00586-009-1161-z.
  47. Stackpool G., Kay A., Morton P. Bone ingrowth characteristics of porous tantalum: a new material for orthopaedic implants. Trans. Combied ORS. 1995; 45.
  48. Kotani S., Fujita Y., Kitsugi T. et al. Bone bonding mechanism of β-tricalcium phosphate. J. Biomed. Mater. Res. 1991; 25 (10): 1303-15. doi: 10.1002/jbm.820251010.
  49. Kitsugi T., Nakamura T., Oka M. et al. Bone-bonding behavior of plasma-sprayed coatings of Bioglass, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J. Biomed. Mater. Res. 1996; 30 (2): 261-9. doi: 10.1002/(SICI)10974636(199602)30:2<261::AID-JBM17>3.0.CO;2-P.
  50. Geesink R.G., Hoefnagels N.H. Six-year results of hydroxyapatite-coated total hip replacement. J. Bone Joint Surg. Br. 1995; 77 (4): 534-47.
  51. Kato H., Nakamura T., Nishiguchi S. et al. Bonding of alkaliand heat-treated tantalum implants to bone. J. Biomed. Mater. Res. 2000; 53 (1): 28-35.
  52. Kokubo T. Metallic materials stimulating bone formation. Med. J. Malaysia. 2004; 59 Suppl B: 91-2.
  53. Miyazaki T., Kim H., Miyaji F. et al. Bioactive tantalum metal prepared by NaOH treatment. J. Biomed. Mater. Res. 2000; 50 (1): 35-42.
  54. Hacking S.A., Bobyn J.D., Tanzer M., Krygier J.J. The osseous response to corundum blasted implant surfaces in a canine total hip arthroplasty model. Clin. Orthop. Relat. Res. 1999; (364): 240-53.
  55. Kokubo T., Kushitani H., Sakka S. et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J. Biomed. Mater. Res. 1990; 24 (6): 721-34. doi: 10.1002/jbm.820240607.
  56. Kim H., Miyaji F., Kokubo T. et al. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 1996; 32 (3): 409-17. doi: 10.1002/(SICI)1097-4636(199611)32:3<409::AIDJBM14>3.0.CO;2-B.
  57. Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces. Prog. Mater. Sci. 2013; 58: 261.
  58. Yavari A., van der Stok J., Chai Y.C. et al. Bone regeneration performance of surface-treated porous titanium. Biomaterials. 2014; 35 (24): 6172-81. doi: 10.1016/j.biomaterials.2014.04.054.
  59. Liu Y., Li J.P., Hunziker E.B., Groot K. Incorporation of growth factors into medical devices via biomimetic coatings. Philos. Trans. Math. Phys. Eng. Sci. 2006; 364: 233. doi: 10.1098/rsta.2005.1685
  60. Goodman S.B., Yao Z., Keeney M., Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013; 34 (13): 3174-83. doi: 10.1016/j.biomaterials.2013.01.074.
  61. Nayak S., Dey T., Naskar D., Kundu S.C. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials. 2013; 34 (12): 2855-64. doi: 10.1016/j.biomaterials.2013.01.019.
  62. Sargeant T.D., Guler M.O., Oppenheimer S.M. et al. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008; 29 (2): 161-71. doi: 10.1016/j.biomaterials.2007.09.012.
  63. Nishiguchi S., Kato H., Neo M. et al. Alkali-and heattreated porous titanium for orthopedic implants. J. Biomed. Mater. Res. 2011; 54 (2): 198-208.
  64. Takadama H., Kim H., Miyagi F. et al. Mechanism of apatite formation induced by silanol groups. J. Ceram. Soc. Japan. 2000; 108: 118-21.
  65. Parks G. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxy complex systems. Chem. Rev. 1965; 65: 177-98.
  66. Barrere F., van der Valk C., Dalmeijer R. et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J. Biomed. Mater. Res. A. 2003; 66 (4): 779-88. doi: 10.1002/jbm.a.10454.
  67. Barrere F., van der Valk C., Meijer G. et al. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J. Biomed. Mater. Res. B Appl. Biomater. 2003; 67 (1)B: 655-65.
  68. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in ectopic sites of different animal models. Biomaterials. 1996; 17 (1): 31-5.
  69. Yuan H., Zou P., Yang Z. et al. Bone morphogenetic protein and ceramic-induced osteogenesis. J. Mater. Sci. Mater. Med. 1998; 9 (12): 717-21.
  70. Yuan H. Osteoinduction by calcium phosphates. 2001.
  71. D’Angelo F., Murena L., Campagnolo M. et al. Analysis of bone ingrowth on a tantalum cup. Indian J. Orthop. 2008; 42 (3): 275-8. doi: 10.4103/0019-5413.39553.
  72. Koutsostathis S., Tsakotos G., Papakostas I., Macheras G. Biological process at bone porous tantalum interface. A review article. J. Orthop. 2009; 6 (4): e3.
  73. Jasty M., Bragdon C.R., Haire T. et al. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components. J. Biomed. Mater. Res. 1993; 27 (5): 639-44. doi: 10.1002/jbm.820270511.
  74. Hanzlik J., Day J. Bone ingrowth in well-fixed retrieved porous tantalum implants. J. Arthroplasty. 2013; 28 (6): 922-7. doi: 10.1016/j.arth.2013.01.035.
  75. Gruen T.A., Poggie R.A., Lewallen D.G. et al. Radiographic evaluation of a monoblock acetabular component: A multicenter study with 2to 5-year results. J. Arthroplasty. 2005; 20 (3): 369-78.
  76. Kostakos A.T., Macheras G.A., Frangakis C.E. et al. Migration of the trabecular metal monoblock acetabular cup system. J. Arthroplasty. 2010; 25 (1): 35-40. doi: 10.1016/j. arth.2008.09.027.
  77. Macheras G., Kateros K., Koutsostathis S. et al. The Trabecular Metal Monoblock acetabular component in patients with high congenital hip dislocation; a prospective study. J. Bone Joint Surg. Br. 2010; 92 (5): 624-8. doi: 10.1302/0301-620X.92B5.23256.
  78. Brunette D. The effects of implant surface topography on the behaviour of cells. Int. J. Oral. Maxillofac. Implant. 1988; 3 (4): 231-46.
  79. Goldberg V., Stevenson S., Feighan J., Davy D. Biology of grit-blasted titanium alloy implants. Clin. Orthop. Relat. Res. 1995; (319): 122-9.
  80. Malizos K., Bargiotas K., Paptheodorou L. et al. Survivorship of monoblock trabecular metal cups in primary THA: midterm results. Clin. Orthop. Relat. Res. 2008; 466 (1): 159-66. doi: 10.1007/s11999-007-0008-3.
  81. Flecher X., Paprosky W., Grillo J. et al. Do tantalum components provide adequate primary fixation in all acetabular revisions ? Orthop. Traumatol. Surg. Res. 2010; 96 (3): 235-41. doi: 10.1016/j.otsr.2009.11.014.
  82. Keller J.C. Tissue compatibility to different surfaces of dental implants. Implant. Dent. 1998; 7: 331-7.
  83. Kieswetter K., Schwarz Z., Hummert T. et al. Surface roughness modulates the local production of growth factors and cytokines by osteo-blastlike MG-63 cells. J. Biomed. Mater. Res. 1996; 32: 55-63.
  84. Schwartz Z., Lohmann C., Sisk M. et al. Local factor production by MG63 osteo-blastlike cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C-and protein kinase A-dependent pathways. Biomaterials. 2001; 22 (7): 731-41.
  85. Welldon K., Atkins G., Howie D., Findlay D. Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype. J. Biomed. Mater. Res. 2008; 84 (3): 691-701. doi: 10.1002/jbm.a.31336.
  86. Gronthos S., Zannettino A., Graves S. et al. Differential cell surface expression of the STRO1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res. 1999; 14: 47-56.
  87. Aubin J., Liu F., Malaval L., Gupta A. Osteoblast and chondroblast differentiation. Bone. 1995; 17 (2 Suppl): 77S-83S.
  88. Dalby M., Riehle M., Yarwood S. et al. Nucleus alignment and cell signaling in fibroblasts: Response to a microgrooved topography. Exp. Cell Res. 2003; 284 (2): 274-82.
  89. Justesen J., Lorentzen M., Andersen L. et al. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces. J. Biomed. Mater. Res. A. 2009; 89 (4): 885-94. doi: 10.1002/jbm.a.32032.
  90. Rice J., Hunt J., Gallagher J. et al. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials. 2003; 24 (26): 4799-818.
  91. Wojciak-Stothard B., Curtis A., Monaghan W. et al. Guidance and activation of murine macrophages by nanometric scale topography. Exp. Cell Res. 1996; 223 (2): 426-35. doi: 10.1006/excr.1996.0098.
  92. Cooper D., Thomas C., Clement J. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone. 2007; 40 (4): 957-65. doi: 10.1016/j. bone.2006.11.011.
  93. Kiebzak G. Age-related bone changes. Exp. Gerontol. 1991; 26 (2–3): 171-87.
  94. Sagomonyants K., Hakim-Zargar M., Jhaveri A. et al. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J. Orthop. Res. 2011; 29 (4): 609-16.

Copyright (c) 2018 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies