Комбинированные подходы лечения травмы спинного мозга
- Авторы: Давлетшин Э.Ф.1, Шульман И.А.2, Мухамедшина Я.О.1,2,3
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Республиканская клиническая больница
- Казанский государственный медицинский университет
- Выпуск: Том 32, № 1 (2025)
- Страницы: 281-292
- Раздел: Обзоры
- URL: https://journals.rcsi.science/0869-8678/article/view/291009
- DOI: https://doi.org/10.17816/vto629852
- ID: 291009
Цитировать
Аннотация
В настоящее время для преодоления последствий травмы спинного мозга используют подходы регенеративной медицины (клеточная терапия) или двигательной реабилитации. Однако эффективность данных подходов на этапе доклинических исследований не всегда приводит к их успешному внедрению в клиническую практику. В частности, полное разрешение функционального дефицита, вызванного тяжёлой травмой спинного мозга, зачастую не представляется возможным. В связи с этим для усиления нейрорегенераторного эффекта необходимо развитие комбинированных подходов, основанных на трансплантации клеток и нейромодуляции. Дополнительное применение дозированной двигательной нагрузки в общем лечебном плане и на фоне комбинированных подходов может оказать значительный поддерживающий эффект. В данном обзоре мы сосредоточились на оценке клинических исследований, в которых используются комбинации различных подходов, для раскрытия понимания механизмов, лежащих в основе их терапевтического эффекта. Несмотря на положительные терапевтические результаты со стороны комбинированных подходов, всё ещё предстоит продолжить исследования возникающих клеточных и молекулярных изменений, включённых в реорганизацию нейронных связей.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Эльдар Фанилевич Давлетшин
Казанский (Приволжский) федеральный университет
Email: eldar.davletschin@gmail.com
ORCID iD: 0000-0001-8784-3200
Россия, Казань
Илья Александрович Шульман
Республиканская клиническая больница
Email: ilyashul@mail.ru
ORCID iD: 0000-0001-8933-8347
SPIN-код: 9337-8690
MD
Россия, КазаньЯна Олеговна Мухамедшина
Казанский (Приволжский) федеральный университет; Республиканская клиническая больница; Казанский государственный медицинский университет
Автор, ответственный за переписку.
Email: yana.k-z-n@mail.ru
ORCID iD: 0000-0002-9435-340X
SPIN-код: 8569-9002
д-р мед. наук, доцент
Россия, Казань; Казань; КазаньСписок литературы
- Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601. doi: 10.1016/j.neuron.2013.10.037
- Sandberg CJ, Vik-Mo EO, Behnan J, et al. Transcriptional profiling of adult neural stem-like cells from the human brain. PLoS One. 2014;9(12):e114739. doi: 10.1371/journal.pone.0114739
- Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol. 2017;141:4–22. doi: 10.1016/j.bcp.2017.07.003
- Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science. 2017;356(6345):1383–1386. doi: 10.1126/science.aal3839
- Mothe AJ, Tator CH. Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int J Dev Neurosci. 2013;31(7):701–713. doi: 10.1016/j.ijdevneu.2013.07.004
- Zhu Y, Uezono N, Yasui T, Nakashima K. Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Dev Dyn. 2018;247(1):75–84. doi: 10.1002/dvdy.24558
- Lu P, Ceto S, Wang Y, et al. Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J Clin Invest. 2017;127(9):3287–3299. doi: 10.1172/JCI92955
- Deng J, Zhang Y, Xie Y, et al. Cell Transplantation for Spinal Cord Injury: Tumorigenicity of Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cells. Stem Cells Int. 2018;2018:5653787. doi: 10.1155/2018/5653787
- Nagoshi N, Tsuji O, Nakamura M, Okano H. Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen Ther. 2019;11:75–80. doi: 10.1016/j.reth.2019.05.006
- Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol. 2014;5:68. doi: 10.3389/fimmu.2014.00068
- Yao L, He C, Zhao Y, et al. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy. Neural Regen Res. 2013;8(5):397–403. doi: 10.3969/j.issn.1673-5374.2013.05.002
- Cheng H, Liu X, Hua R, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12:253. doi: 10.1186/s12967-014-0253-7
- Wewetzer K, Verdú E, Angelov DN, Navarro X. Olfactory ensheathing glia and Schwann cells: two of a kind? Cell Tissue Res. 2002;309(3):337–345. doi: 10.1007/s00441-002-0607-y
- Oudega M. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord. Acta Physiol (Oxf). 2007;189(2):181–189. doi: 10.1111/j.1748-1716.2006.01658.x
- Saberi H, Moshayedi P, Aghayan HR, et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett. 2008;443(1):46–50. doi: 10.1016/j.neulet.2008.07.041
- Gant KL, Guest JD, Palermo AE, et al. Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. J Neurotrauma. 2022;39(3–4):285–299. doi: 10.1089/neu.2020.7590
- Santamaria AJ, Benavides FD, Saraiva PM, et al. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol. 2021;11:514181. doi: 10.3389/fneur.2020.514181
- Anderson KD, Guest JD, Dietrich WD, et al. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J Neurotrauma. 2017;34(21):2950–2963. doi: 10.1089/neu.2016.4895
- Chen L, Huang H, Xi H, et al. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant. 2014;23 Suppl 1:S35–S44. doi: 10.3727/096368914X685014
- Khan S, Mafi P, Mafi R, Khan W. A Systematic Review of Mesenchymal Stem Cells in Spinal Cord Injury, Intervertebral Disc Repair and Spinal Fusion. Curr Stem Cell Res Ther. 2018;13(4):316–323. doi: 10.2174/1574888X11666170907120030
- Cofano F, Boido M, Monticelli M, et al. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci. 2019;20(11):2698. doi: 10.3390/ijms20112698
- Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. Methods Mol Biol. 2016;1416:123–146. doi: 10.1007/978-1-4939-3584-0_7
- Maacha S, Sidahmed H, Jacob S, et al. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020;2020:4356359. doi: 10.1155/2020/4356359
- Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, et al. Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats. Front Pharmacol. 2018;9:343. doi: 10.3389/fphar.2018.00343
- Satti HS, Waheed A, Ahmed P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy. 2016;18(4):518–522. doi: 10.1016/j.jcyt.2016.01.004
- Albu S, Kumru H, Coll R, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. 2021;23(2):146–156. doi: 10.1016/j.jcyt.2020.08.008
- Yang Y, Pang M, Chen YY, et al. Human umbilical cord mesenchymal stem cells to treat spinal cord injury in the early chronic phase: study protocol for a prospective, multicenter, randomized, placebo-controlled, single-blinded clinical trial. Neural Regen Res. 2020;15(8):1532–1538. doi: 10.4103/1673-5374.274347
- Vaquero J, Zurita M, Rico MA, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20(6):806–819. doi: 10.1016/j.jcyt.2018.03.032
- Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res Ther. 2021;12(1):545. doi: 10.1186/s13287-021-02609-x
- Oraee-Yazdani S, Akhlaghpasand M, Golmohammadi M, et al. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther. 2021;12(1):445. doi: 10.1186/s13287-021-02515-2
- Xiao Z, Tang F, Zhao Y, et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Cell Transplant. 2018;27(6):907–915. doi: 10.1177/0963689718766279
- Muthu S, Jeyaraman M, Gulati A, Arora A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy. 2021;23(3):186–197. doi: 10.1016/j.jcyt.2020.09.007
- Szymoniuk M, Litak J, Sakwa L, et al. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells. 2022;12(1):120. doi: 10.3390/cells12010120
- Oh SK, Choi KH, Yoo JY, et al. A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery. 2016;78(3):436–447. doi: 10.1227/NEU.0000000000001056
- Cao QL, Howard RM, Dennison JB, Whittemore SR. Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol. 2002;177(2):349–359. doi: 10.1006/exnr.2002.7981
- Alexanian AR, Fehlings MG, Zhang Z, Maiman DJ. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats. Neurorehabil Neural Repair. 2011;25(9):873–880. doi: 10.1177/1545968311416823
- Boido M, Garbossa D, Fontanella M, Ducati A, Vercelli A. Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression. World Neurosurg. 2014;81(1):183–190. doi: 10.1016/j.wneu.2012.08.014
- Gass GC, Camp EM. Physiological characteristics of trained Australian paraplegic and tetraplegic subjects. Med Sci Sports. 1979;11(3):256–259.
- Gass GC, Watson J, Camp EM, et al. The effects of physical training on high level spinal lesion patients. Scand J Rehabil Med. 1980;12(2):61–65.
- Gass GC, Camp EM, Davis HA, et al. The effects of prolonged exercise on spinally injured subjects. Med Sci Sports Exerc. 1981;13(5):277–283.
- Sandrow-Feinberg HR, Izzi J, Shumsky JS, et al. Forced exercise as a rehabilitation strategy after unilateral cervical spinal cord contusion injury. J Neurotrauma. 2009;26(5):721–731. doi: 10.1089/neu.2008.0750
- Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast. 2016;2016:1216258. doi: 10.1155/2016/1216258
- Yu P, Zhang W, Liu Y, et al. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury. Int Rev Neurobiol. 2019;147:199–217. doi: 10.1016/bs.irn.2019.08.003
- Petruska JC, Ichiyama RM, Jindrich DL, et al. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J Neurosci. 2007;27(16):4460–4471. doi: 10.1523/JNEUROSCI.2302-06.2007
- Ilha J, Centenaro LA, Broetto Cunha N, et al. The beneficial effects of treadmill step training on activity-dependent synaptic and cellular plasticity markers after complete spinal cord injury. Neurochem Res. 2011;36(6):1046–1055. doi: 10.1007/s11064-011-0446-x
- Fu J, Wang H, Deng L, Li J. Exercise Training Promotes Functional Recovery after Spinal Cord Injury. Neural Plast. 2016;2016:4039580. doi: 10.1155/2016/4039580
- Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91(1):48–60. doi: 10.2522/ptj.20090359
- Lucareli PR, Lima MO, Lima FP, et al. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study. Spinal Cord. 2011;49(9):1001–1007. doi: 10.1038/sc.2011.37
- Wirz M, Mach O, Maier D, et al. Effectiveness of Automated Locomotor Training in Patients with Acute Incomplete Spinal Cord Injury: A Randomized, Controlled, Multicenter Trial. J Neurotrauma. 2017;34(10):1891–1896. doi: 10.1089/neu.2016.4643
- Chari A, Hentall ID, Papadopoulos MC, Pereira EA. Surgical Neurostimulation for Spinal Cord Injury. Brain Sci. 2017;7(2):18. doi: 10.3390/brainsci7020018
- Zheng Y, Mao YR, Yuan TF, et al. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res. 2020;15(8):1437–1450. doi: 10.4103/1673-5374.274332
- Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020;19(1):34. doi: 10.1186/s12938-020-00773-4
- Hofstoetter US, McKay WB, Tansey KE, et al. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014;37(2):202–211. doi: 10.1179/2045772313Y.0000000149
- Levin MF, Hui-Chan CW. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions. Electroencephalogr Clin Neurophysiol. 1992;85(2):131–142. doi: 10.1016/0168-5597(92)90079-q
- Crone C, Nielsen J, Petersen N, et al. Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain. 1994;117(5):1161–1168. doi: 10.1093/brain/117.5.1161
- Joodaki MR, Olyaei GR, Bagheri H. The effects of electrical nerve stimulation of the lower extremity on H-reflex and F-wave parameters. Electromyogr Clin Neurophysiol. 2001;41(1):23–28.
- Benavides FD, Jo HJ, Lundell H, et al. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia. J Neurosci. 2020;40(13):2633–2643. doi: 10.1523/JNEUROSCI.2374-19.2020
- Inanici F, Samejima S, Gad P, et al. Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity Function in Chronic Tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2018;26(6):1272–1278. doi: 10.1109/TNSRE.2018.2834339
- Gad P, Lee S, Terrafranca N, et al. Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. J Neurotrauma. 2018;35(18):2145–2158. doi: 10.1089/neu.2017.5461
- Balykin MV, Yakupov RN, Mashin VV, et al. The influence of non-invasive electrical stimulation of the spinal cord on the locomotor function of patients presenting with movement disorders of central genesis. Vopr Kurortol Fizioter Lech Fiz Kult. 2017;94(4):4–9. doi: 10.17116/kurort20179444-9
- McHugh LV, Miller AA, Leech KA, et al. Feasibility and utility of transcutaneous spinal cord stimulation combined with walking-based therapy for people with motor incomplete spinal cord injury. Spinal Cord Ser Cases. 2020;6(1):104. doi: 10.1038/s41394-020-00359-1
- Sayenko DG, Rath M, Ferguson AR, et al. Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. J Neurotrauma. 2019;36(9):1435–1450. doi: 10.1089/neu.2018.5956
- Riedy LW, Chintam R, Walter JS. Use of a neuromuscular stimulator to increase anal sphincter pressure. Spinal Cord. 2000;38(12):724–727. doi: 10.1038/sj.sc.3101088
- Deng Y, Dong Y, Liu Y, et al. A systematic review of clinical studies on electrical stimulation therapy for patients with neurogenic bowel dysfunction after spinal cord injury. Medicine (Baltimore). 2018;97(41):e12778. doi: 10.1097/MD.0000000000012778
- Tai C, Roppolo JR, de Groat WC. Spinal reflex control of micturition after spinal cord injury. Restor Neurol Neurosci. 2006;24(2):69–78.
- Parittotokkaporn S, Varghese C, O’Grady G, et al. Non-invasive neuromodulation for bowel, bladder and sexual restoration following spinal cord injury: A systematic review. Clin Neurol Neurosurg. 2020;194:105822. doi: 10.1016/j.clineuro.2020.105822
- Feloney MP, Stauss K, Leslie SW. Sacral Neuromodulation. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
- Lombardi G, Del Popolo G. Clinical outcome of sacral neuromodulation in incomplete spinal cord injured patients suffering from neurogenic lower urinary tract symptoms. Spinal Cord. 2009;47(6):486–491. doi: 10.1038/sc.2008.172
- van Ophoven A, Engelberg S, Lilley H, Sievert KD. Systematic literature review and meta-analysis of sacral neuromodulation (SNM) in patients with neurogenic lower urinary tract dysfunction (nLUTD): over 20 years’ experience and future directions. Adv Ther. 2021;38(4):1987–2006. doi: 10.1007/s12325-021-01650-9
- Hu M, Lai S, Zhang Y, et al. Sacral Neuromodulation for Lower Urinary Tract Dysfunction in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Urol Int. 2019;103(3):337–343. doi: 10.1159/000501529
- Sharifiaghdas F. Sacral neuromodulation in congenital lumbo-sacral and traumatic spinal cord defects with neurogenic lower urinary tract symptoms: a single-center experience in children and adolescents. World J Urol. 2019;37(12):2775–2783. doi: 10.1007/s00345-019-02721-x
- Gupta P, Ehlert MJ, Sirls LT, Peters KM. Percutaneous tibial nerve stimulation and sacral neuromodulation: an update. Curr Urol Rep. 2015;16(2):4. doi: 10.1007/s11934-014-0479-1
- Daia C, Bumbea AM, Badiu CD, et al. Interferential electrical stimulation for improved bladder management following spinal cord injury. Biomed Rep. 2019;11(3):115–122. doi: 10.3892/br.2019.1227
- Moore JS, Gibson PR, Burgell RE. Neuromodulation via Interferential Electrical Stimulation as a Novel Therapy in Gastrointestinal Motility Disorders. J Neurogastroenterol Motil. 2018;24(1):19–29. doi: 10.5056/jnm17071
- Lavrov I, Gerasimenko YP, Ichiyama RM, et al. Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability. J Neurophysiol. 2006;96(4):1699–1710. doi: 10.1152/jn.00325.2006
- Deer TR, Mekhail N, Provenzano D, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation. 2014;17(6):515–550. doi: 10.1111/ner.12208
- Lu DC, Edgerton VR, Modaber M, et al. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients. Neurorehabil Neural Repair. 2016;30(10):951–962. doi: 10.1177/1545968316644344
- Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(5):1394–1409. doi: 10.1093/brain/awu038
- Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–1947. doi: 10.1016/S0140-6736(11)60547-3
- Zhu H, Poon W, Liu Y, et al. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant. 2016;25(11):1925–1943. doi: 10.3727/096368916X691411
- Zhou XH, Ning GZ, Feng SQ, et al. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant. 2012;21 suppl 1:S39–S47. doi: 10.3727/096368912X633752
- Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair. 2010;24(1):10–22. doi: 10.1177/1545968309347685
- Megía García A, Serrano-Muñoz D, Taylor J, et al. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil Neural Repair. 2020;34(1):3–12. doi: 10.1177/1545968319893298
- Hofstoetter US, Krenn M, Danner SM, et al. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif Organs. 2015;39(10):E176–E186. doi: 10.1111/aor.12615
- Gad P, Gerasimenko Y, Zdunowski S, et al. Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia. Front Neurosci. 2017;11:333. doi: 10.3389/fnins.2017.00333
- Islamov R, Bashirov F, Fadeev F, et al. Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int J Mol Sci. 2020;21(23):8896. doi: 10.3390/ijms21238896
- Islamov R, Bashirov F, Izmailov A, et al. New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation. Cells. 2022;11(1):144. doi: 10.3390/cells11010144
- Siddiqui AM, Islam R, Cuellar CA, et al. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. NPJ Regen Med. 2021;6(1):66. doi: 10.1038/s41536-021-00176-6
Дополнительные файлы
