Individual hemiendoprosthetics of the posterior articular facet of the calcaneus in the complex treatment of damage to the subtalar joint: a case report

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The subtalar joint is one of the key joints in the foot. Its main function is to adapt the hindfoot to uneven ground during the gait cycle. Degenerative changes in the subtalar joint are primarily the result of intra-articular calcaneal fractures, varus or valgus deformities of the hindfoot, rheumatoid arthritis and idiopathic deforming osteoarthritis. Arthrodesis of the subtalar joint results in restriction of supination-pronation movements of the foot, overloading of the external compartments and, as a consequence, impaired gait biomechanics.

DESCRIPTION OF THE CASE: We present a clinical case of surgical treatment of a patient with a malunited fracture of the calcaneus. The posterior articular facet of the calcaneus was hemiendoprosthetically replaced with a custom-made ceramic implant.

CONCLUSION: Short-term results of the patient's treatment with posttraumatic deforming arthrosis of the subtalar joint allow us to conclude on the efficacy of the posterior articular facet hemiendoprosthesis of the calcaneus in the treatment of this pathology. The proposed technique makes it possible to preserve the mobility of the hindfoot and reduce the severity of the pain syndrome.

About the authors

Vladimir V. Skrebtsov

Yudin City Clinical Hospital

Author for correspondence.
Email: Skrebtsov@mail.ru
ORCID iD: 0000-0003-0833-6628
SPIN-code: 6002-7102

MD, Cand. Sci. (Medicine)

Russian Federation, 4 Kolomenskiy passage, 115446 Moscow

Viktor G. Protsko

Yudin City Clinical Hospital; Russian Peoples’ Friendship University

Email: 89035586679@mail.ru
ORCID iD: 0000-0002-5077-2186
SPIN-code: 4628-7919

MD, Dr. Sci. (Medicine), professor

Russian Federation, 4 Kolomenskiy passage, 115446 Moscow; Moscow

Alexander V. Skrebtsov

Yudin City Clinical Hospital

Email: Skrebtsovalex@mail.ru
ORCID iD: 0000-0002-1418-3368
SPIN-code: 3682-4569

MD

Russian Federation, 4 Kolomenskiy passage, 115446 Moscow

Sargon K. Tamoev

Yudin City Clinical Hospital

Email: Sargonik@mail.ru
ORCID iD: 0000-0001-8748-0059
SPIN-code: 2986-1390

MD, Cand. Sci. (Medicine)

Russian Federation, 4 Kolomenskiy passage, 115446 Moscow

Vasilii V. Kuznetsov

Yudin City Clinical Hospital

Email: vkuznecovniito@gmail.com
ORCID iD: 0000-0001-6287-8132
SPIN-code: 6499-2760

MD, Cand. Sci. (Medicine);

Russian Federation, 4 Kolomenskiy passage, 115446 Moscow

References

  1. The physiology of the joints, vol. 2: Lower Limb. By I.A. Kapandji. Second edition. British Journal of Surgery. 1971;58(5):403. doi: 10.1002/bjs.1800580528
  2. Greisberg J, Hansen ST, Sangeorzan B. Deformity and Degeneration in the Hindfoot and Midfoot Joints of the Adult Acquired Flatfoot. Foot Ankle Int. 2003;24(7):530–534. doi: 10.1177/107110070302400704
  3. Kaeley GS, Ranganath VK, Roth J. The Elusive but Painful Subtalar Joint in Rheumatoid Arthritis. J Rheumatol. 2019;46(4):333. doi: 10.3899/jrheum.181156
  4. Wakabayashi H, Nakata K, Nishimura A, Hasegawa M, Sudo A. The Onset of Subtalar Joint Monoarthritis in a Patient with Rheumatoid Arthritis. Diagnostics. 2022;12:2311. doi: 10.3390/diagnostics12102311
  5. Ebben BJ, Myerson M. Management of the Subtalar Joint Following Calcaneal Fracture Malunion. Foot Ankle Clin. 2022;27(4):787–803. doi: 10.1016/j.fcl.2022.08.001
  6. Patent RUS № 2788474/ 19.01.2023, Byul. № 2. Karlov АV, Skrebtsov VV, Protsko VG. Sposob lecheniya deformiruyushchih povrezhdenij podtarannogo sustava i gemiendoprotez podtarannogo sustava dlya ego osushchestvleniya. Available from: https://www.fips.ru/registers-doc-view/fips_servlet (In Russ.). EDN: OKYSGD
  7. Menkveld SR, Knipstein EA, Quinn JR. Analysis of gait patterns in normal school-aged children. J Pediatr Orthop. 1988;8(3):263–267. doi: 10.1097/01241398-198805000-00002
  8. Munteanu S, Buldt A, Arnold J, Kelly L, Menz H. Foot structure and lower limb function in individuals with midfoot osteoarthritis: a systematic review. Osteoarthritis Cartilage. 2020;28(12):1514–1524. doi: 10.1016/j.joca.2020.08.012
  9. Joveniaux P, Harisboure A, Ohl X, Dehoux E. Long-term results of in situ subtalar arthrodesis. Int Orthop. 2010;34(8):1199–1205. doi: 10.1007/s00264-010-1041-5
  10. Bruce J, Sutherland A. Surgical versus conservative interventions for displaced intra-articular calcaneal fractures. Cochrane database of systematic reviews. 2013;31(1):CD008628. doi: 10.1002/14651858.CD008628.pub2
  11. Ebalard M, Le Henaff G, Sigonney G, et al. Risk of osteoarthritis secondary to partial or total arthrodesis of the subtalar and midtarsal joints after a minimum follow-up of 10 years. Orthopaedics & Traumatology: Surgery & Research. 2014;100(4 Suppl):S231–S237. doi: 10.1016/j.otsr.2014.03.003
  12. Hutchinson I, Baxter J, Gilbert S, et al. How Do Hindfoot Fusions Affect Ankle Biomechanics: A Cadaver Model. Clin Orthop Relat Res. 2015;474(4):1008–16. doi: 10.1007/s11999-015-4671-5
  13. Kim Y, Kim J, Lee KM, Koo S. The increase of joint contact forces in foot joints with simulated subtalar fusion in healthy subjects. Gait Posture. 2019;74:27–32. doi: 10.1016/j.gaitpost.2019.07.376
  14. Glanzmann M, Sanhueza-Hernandez R. Arthroscopic Subtalar Arthrodesis for Symptomatic Osteoarthritis of the Hindfoot: A Prospective Study of 41 Cases. Foot & ankle international. 2007;28(1):2–7. doi: 10.3113/FAI.2007.0001
  15. Hicks-Little C, Peindl R, Hubbard-Turner T, et al. Lower Extremity Joint Kinematics during Stair Climbing in Knee Osteoarthritis. Med Sci Sports Exerc. 2011;43(3):516–524. doi: 10.1249/MSS.0b013e3181f257be
  16. Jia X, Qiang M, Chen Y, Zhang K, Chen S. The influence of selective arthrodesis on three-dimensional range of motion of hindfoot joint: A cadaveric study. Clinical Biomechanics. 2019;69:9–15. doi: 10.1016/j.clinbiomech.2019.06.011
  17. Zhang K, Chen Y, Qiang M, Hao Y. Effects of five hindfoot arthrodeses on foot and ankle motion: Measurements in cadaver specimens. Sci Rep. 2016;6:35493. doi: 10.1038/srep35493
  18. Fletcher AN, Liles JL, Steele JJ, Pereira GF, Adams SB. Systematic Review of Subtalar Distraction Arthrodesis for the Treatment of Subtalar Arthritis. Foot Ankle Int. 2020;41(4):437–448. doi: 10.1177/1071100719899050
  19. Niazi NS, Aljawadi A, Pillai A. Shaped titanium wedges for subtalar distraction arthrodesis: Early clinical and radiological results. The Foot. 2020;42:101647. doi: 10.1016/j.foot.2019.10.002
  20. Ahn JH, Lee SK, Kim KJ, Kim YI, Choy WS. Subtalar Arthroscopic Procedures for the Treatment of Subtalar Pathologic Conditions: 115 Consecutive Cases. Orthopedics. 2024;32(12):891. doi: 10.3928/01477447-20091020-12
  21. Ringus V, Landsberger ML., inventors. Subtalar joint prostheseis and installation device. Patent WO 2014/022665. 2014 Feb 06.
  22. Sanders RW, Gutierrez S, inventors. Joint arthroplasty systems, methods, and components. United States patent US-9700424-B2. 2017 July 11.
  23. Schon Lew C, Chiodo C, Parks BG, et al., inventors. Subtalar joint prostheseis and its method of implantation. United States patent US-9775717-B2. 2017 Oct 3.
  24. Goldbegr A, Blunn G, inventors. Subtalar joint implant. United States patent US-10117749-B2. 2018 Nov 6.
  25. Baptiste Jn, Jonelle M. The Design of a Subtalar Joint Prosthesis Wear Testing Mechanism [Internet]. Available from: https://era.library.ualberta.ca/items/6aca0f90-cbf2-482a-89ae-fa9ed2d7ce71. doi: 10.7939/R3599ZH1Q
  26. Ruatti S, Corbet C, Boudissa M, et al. Total Talar Prosthesis Replacement after Talar Extrusion. The Journal of Foot and Ankle Surgery. 2017;56(4):905–909. doi: 10.1053/j.jfas.2017.04.005
  27. Lachman JR, Parekh SG. Total Talus Replacement for Traumatic Bone Loss or Idiopathic Avascular Necrosis of the Talus. Tech Foot Ankle Surg. 2019;18:87–98.
  28. Stojanović B, Bauer C, Stotter C, et al. Tribocorrosion of a CoCrMo alloy sliding against articular cartilage and the impact of metal ion release on chondrocytes. Acta Biomater. 2019;94:597–609. doi: 10.1016/j.actbio.2019.06.015
  29. Taniguchi A, Tanaka Y. An Alumina Ceramic Total Talar Prosthesis for Avascular Necrosis of the Talus. Foot Ankle Clin. 2019;24(1):163–171. doi: 10.1016/j.fcl.2018.10.004
  30. Tonogai I, Hamada D, Yamasaki Y, et al. Custom-Made Alumina Ceramic Total Talar Prosthesis for Idiopathic Aseptic Necrosis of the Talus: Report of Two Cases. Case Rep Orthop. 2017;2017:8290804. doi: 10.1155/2017/8290804
  31. Vanlommel J, De Corte R, Luyckx JP, et al. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome. J Arthroplasty. 2017;32(1):256–262. doi: 10.1016/j.arth.2016.06.024
  32. Salehi A, Tsai S, Pawar V, et al. Wettability Analysis of Orthopaedic Materials Using Optical Contact Angle Methods. Key Eng Mater. 2006;309–311:1199–1202. doi: 10.4028/ href='www.scientific.net/KEM.309-311.1199' target='_blank'>www.scientific.net/KEM.309-311.1199

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Appearance of the feet: a — rear view, b — side view. Flattening of the internal longitudinal arch and valgus deviation of the heel bone of the right foot are determined.

Download (100KB)
3. Fig. 2. MSCT scans of the right ankle joint and foot: a — coronary projection, b — sagittal projection. Narrowing and unevenness of the joint space, osteochondral exostosis of the subtalar joint area are noted.

Download (132KB)
4. Fig. 3. Dynamic pedobarography graph in the preoperative period: a — left foot, b — right foot. There is an increase in the duration of the heel strike and loading phase, a decrease in the strength of the forefoot of the right foot.

Download (213KB)
5. Fig. 4. Dynamic pedobarography of both feet before surgery: a — left foot, b — right foot. The lateral displacement of the load vector is determined, areas of overload of the outer parts of the foot are determined.

Download (63KB)
6. Fig. 5. Preoperative 3-D planning of a customized subtalar implant: a — modeling the required size of bone resection of the calcaneus, b — modeling the congruence of the subtalar joint after installation of a hemiendoprosthesis.

Download (249KB)
7. Fig. 6. Intraoperative view of the right foot after implantation of a hemiendoprosthesis of the subtalar joint: the prosthesis is stable, the congruence of the articular surfaces of the hemiendoprosthesis and the talus is determined.

Download (113KB)
8. Fig. 7. Appearance of the right foot after 12 months after surgery: a — rear view, b — side view. A moderate valgus position of the heel bone is determined, postoperative scars without signs of inflammation.

Download (119KB)
9. Fig. 8. MSCT scans of the right ankle and foot 12 months after surgery: a — frontal projection, b — sagittal projection. No zone of lysis around the hemiendoprosthesis was detected, no signs of degenerative changes in the articular surface of the talus were detected.

Download (114KB)
10. Fig. 9. X-ray of the right foot with a load in the lateral projection: A — Böhler angle 20°, B — Gissan angle 118°.

Download (93KB)
11. Fig. 10. Dynamic pedobarography 12 months after hemiprosthesis of the subtalar joint: a — left foot, b — right foot. The physiological distribution of the load vector of the right foot is determined without areas of increased pressure.

Download (61KB)
12. Fig. 11. Dynamic pedobarography graph after treatment: a — left foot, b — right foot. Equivalent strength of both feet is noted. No signs of increased strength in the midfoot.

Download (220KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».