Advantage of the anterior approach in total hip arthroplasty (topographic-anatomical and computed tomography substantiation)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Hip arthroplasty is effectively performed for the elderly population and young people who continue to work and have an active lifestyle. An increase in the number of operations is facilitated by an increase in the prevalence of osteoarthritis and physical inactivity, leading to an increase in BMI and, accordingly, the load on the joints of the lower extremities. The increased volume of hip arthroplasty, the expansion of indications, the decrease in the average age of patients undergoing the intervention, and the related increase in surgical needs point to the need to improve surgical treatment approaches. In the CIS countries, the direct anterior approach is rarely used; in our opinion, it is less traumatic.

OBJECTIVE: To conduct a topographic-anatomical and computed tomographic study to support the advantages of using a direct anterior approach when performing hip arthroplasty.

MATERIALS AND METHODS: The present study included two stages: First, (a) layer-by-layer anatomical preparation of the hip joint area on five sectional complexes to establish accurate anatomical and topographic relationships of the structures of the anterior thigh region and design accesses and (b) hip arthroplasty on 10 biomannequins using two approaches: five operations (direct anterior approach) and five operations (direct lateral approach), and second, evaluation of access to the hip joint in terms of criteria developed by A.Yu. Sazon-Yaroshevich to assess online access.

RESULTS: This study confirmed that the direct anterior approach is less traumatic; its use preserves soft tissues. However, the use of a direct anterior approach requires additional training of endoprosthetic surgeons. The authors recommend executing the first 10–20 endoprostheses on biomanikins to link the risk of problems and to solidify surgical skills at the beginning of the learning curve. The depth of the wound is 20–25% less with the direct anterior approach to the hip joint than with the Harding approach — 101 and 136 mm, respectively.

CONCLUSION: Because the approach to the joint is carried out along the intermuscular gap, no soft tissues, blood vessels, or nerves are damaged during the direct anterior approach. According to its characteristics, the direct anterior approach is optimal for performing hip arthroplasty. Maintaining muscles during the performance of the direct anterior approach allows you to begin early activation and rehabilitation of patients. The adoption of a direct anterior approach is related to improved hip joint functional results in the early postoperative period.

About the authors

Ivan K. Eremin

LLC “Neuro-clinic”

Email: eremindoctor@yandex.ru
ORCID iD: 0000-0002-0992-0706
SPIN-code: 9019-4184

Orthopedic Traumatologist

Russian Federation, Moscow

Egor V. Ogarev

Priorov National Medical Research Center for Traumatology and Orthopedics

Email: evogarev@yandex.ru
ORCID iD: 0000-0003-0621-1047

MD, Cand. Sci. (Med.), Radiologist, Senior Researcher

Russian Federation, Moscow

Armen A. Daniliyants

Pirogov Russian National Research Medical University

Author for correspondence.
Email: armendts@mail.ru
ORCID iD: 0000-0001-6692-0975

Student

Russian Federation, Moscow

Kirill A. Zhandarov

Sechenov First Moscow State Medical University

Email: zhandarov_k_a@staff.sechenov.ru
ORCID iD: 0000-0002-2908-6990

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Nikolay V. Zagorodniy

Priorov National Medical Research Center for Traumatology and Orthopedics; Russian Peoples’ Friendship University

Email: zagorodniy51@mail.ru
ORCID iD: 0000-0002-6736-9772
SPIN-code: 6889-8166

MD, Dr. Sci. (Med.), Professor, Corresponding Member of RAS, Traumatologist-Orthopedist

Russian Federation, Moscow; Moscow

References

  1. Sloan M, Premkumar A, Sheth NP. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am. 2018;100(17):1455–1460. doi: 10.2106/jbjs.17.01617
  2. Injuries, orthopedic morbidity, the state of trauma and orthopedic care for the population of Russia in 2018: an annual statistical collection. Moscow: CITO; 2019. Available from: http://kbf.cito-priorov.ru/#s/9NnN-gIg (In Russ).
  3. Injuries, orthopedic morbidity, the state of trauma and orthopedic care for the population of Russia in 2019: an annual statistical collection. Moscow: CITO; 2020. Available from: https://www.cito-priorov.ru/science/ezhegodnyy-statisticheskiy-sbornik-travmatizm-ortopedicheskaya-zabolevaemost-organizatsiya-travmatol/2019/ (In Russ).
  4. Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 2022;30(2):184–195. doi: 10.1016/j.joca.2021.04.020
  5. Agarwala SR, Vijayvargiya M, Pandey P. Avascular necrosis as a part of ‘long COVID-19’. BMJ Case Rep. 2021;14(7):e242101. doi: 10.1136/bcr-2021-242101
  6. Zhang S, Wang C, Shi L, et al. Beware of steroid-induced avascular necrosis of the femoral head in the treatment of COVID-19-experience and lessons from the SARS Epidemic. Drug Des Devel Ther. 2021;(15):983–995. doi: 10.2147/dddt.s298691
  7. Docter S, Philpott HT, Godkin L, et al. Comparison of intra and post-operative complication rates among surgical approaches in Total Hip Arthroplasty: A systematic review and meta-analysis. J Orthop. 2020;(20):310–325. doi: 10.1016/j.jor.2020.05.008
  8. Realyvasquez J, Singh V, Shah AK, et al. The direct anterior approach to the hip: a useful tool in experienced hands or just another approach? Arthroplasty. 2022;4(1):1. doi: 10.1186%2Fs42836-021-00104-5
  9. Gulbrandsen TR, Muffly SA, Shamrock A, et al. Total hip arthroplasty: direct anterior approach versus posterior approach in the first year of practice. Iowa Orthop J. 2022;42(1):127–136.
  10. Van der Sijp MPL, van Delft D, Krijnen P, et al. Surgical approaches and hemiarthroplasty outcomes for femoral neck fractures: A meta-analysis. J Arthroplasty. 2018;33(5):1617–1627. doi: 10.1016/j.arth.2017.12.029
  11. Wang Z, Hou J-Z, Wu C-H, et al. A systematic review and meta-analysis of direct anterior approach versus posterior approach in total hip arthroplasty. J Orthop Surg Res. 2018;13(1):229. doi: 10.1186/s13018-018-0929-4
  12. Zhou Z, Li Y, Peng Y, et al. Clinical efficacy of direct anterior approach vs. other surgical approaches for total hip arthroplasty: A systematic review and meta-analysis based on RCTs. Front Surg. 2022;(9):1022937. doi: 10.3389/fsurg.2022.1022937
  13. Kucukdurmaz F, Sukeik M, Parvizi J. A meta-analysis comparing the direct anterior with other approaches in primary total hip arthroplasty. Surgeon. 2019;17(5):291–299. doi: 10.1016/j.surge.2018.09.001
  14. Stone AH, Sibia US, Atkinson R, et al. Evaluation of the learning curve when transitioning from posterolateral to Direct Anterior Hip Arthroplasty: a consecutive series of 1000 cases. J Arthroplasty. 2018;33(8):2530–2534. doi: 10.1016/j.arth.2018.02.086
  15. Ponzio DY, Poultsides LA, Salvatore A, et al. In-hospital morbidity and postoperative revisions after direct anterior vs posterior Total hip Arthroplasty. J Arthroplast. 2018;(33):1421–1425.e1. doi: 10.1016/j.arth.2017.11.053
  16. Garbarino L, Gold P, Sodhi N, et al. Does structured postgraduate training affect the learning curve in direct anterior total hip arthroplasty? A single surgeon’s first 200 cases. Arthroplast Today. 2021;(7):98–104. doi: 10.1016/j.artd.2020.11.019
  17. De Steiger RN, Lorimer M, Solomon M. What is the learning curve for the anterior approach for total hip arthroplasty? Clin Orthop Relat Res. 2015;473(12):3860–6. doi: 10.1007/s11999-015-4565-6
  18. Petis S, Howard JL, Lanting BL, et al. Surgical approach in primary total hip arthroplasty: anatomy, technique and clinical outcomes. Can J Surg. 2015;58(2):128–39. doi: 10.1503/cjs.007214
  19. Galakatos GR. Direct anterior total hip arthroplasty. Mo Med. 2018;115(6):537–541.
  20. Post ZD, Orozco F, Diaz-Ledezma C, et al. Direct anterior approach for total hip arthroplasty: indications, technique, and results. J Am Acad Orthop Surg. 2014;22(9):595–603. doi: 10.5435/jaaos-22-09-595
  21. LROI report. Annual report Dutch Arthroplasty Register; 2021.
  22. Khan IA, Magnuson JA, Arshi A, et al. Direct anterior approach in hip hemiarthroplasty for femoral neck fractures: do short-term outcomes differ with approach?: a systematic review and meta-analysis. JBJS Rev. 2022;10(9). doi: 10.2106/jbjs.rvw.21.00202
  23. Gazendam A, Bozzo A, Ekhtiari S, et al. Short-term outcomes vary by surgical approach in total hip arthroplasty: a network meta-analysis. Arch Orthop Trauma Surg. 2022;142(10):2893–2902. doi: 10.1007/s00402-021-04131-4
  24. Martusiewicz A, Delagrammaticas D, Harold RE, et al. Anterior versus posterior approach total hip arthroplasty: patient-reported and functional outcomes in the early postoperative period. Hip Int. 2020;(30):695–702. doi: 10.1177/1120700019881413
  25. Gofton WT, Ibrahim MM, Kreviazuk CJ, et al. Ten-Year experience with the anterior approach to total hip arthroplasty at a Tertiary Care Center. J Arthroplasty. 2020;35(5):1281–1289.e1. doi: 10.1016/j.arth.2019.12.025
  26. Xu Z, Zhang J, Li J, et al. Direct anterior approach in total hip arthroplasty: more indications and advantages than we found. Arthroplasty. 2022;4(1):29. doi: 10.1186/s42836-022-00130-x
  27. Liu Z, Bell CD, Ong AC, et al. Direct anterior approach total hip arthroplasty for Crowe III and IV dysplasia. Arthroplast Today. 2020;6(2):251–256. doi: 10.1016/j.artd.2020.02.008
  28. Liu ZY, Li ZQ, Wu ST, et al. Subtrochanteric osteotomy in direct anterior approach total hip arthroplasty. Orthop Surg. 2020;12(6):2041–2047. doi: 10.1111/os.12744
  29. Huerfano E, Bautista M, Huerfano M, et al. Use of surgical approach is not associated with instability after primary total hip arthroplasty: a meta-analysis comparing direct anterior and posterolateral approaches. J Am Acad Orthop Surg. 2021;29(22):e1126–e1140. doi: 10.5435/jaaos-d-20-00861
  30. Zijlstra WP, De Hartog B, Van Steenbergen LN, et al. Effect of femoral head size and surgical approach on risk of revision for dislocation after total hip arthroplasty. Acta Orthop. 2017;88(4):395–401. doi: 10.1080/17453674.2017.1317515
  31. Rykov K, Meys TWGM, Knobben BAS, et al. MRI assessment of muscle damage after the posterolateral versus direct anterior approach for THA (Polada Trial). A randomized controlled trial. J Arthroplasty. 2021;36(9):3248–3258.e1. doi: 10.1016/j.arth.2021.05.009
  32. Patel N, Golwala P. Approaches for total hip arthroplasty: a systematic review. Cureus. 2023;15(2):e34829. doi: 10.7759/cureus.34829
  33. Zhao HY, Kang PD, Xia YY, et al. Comparison of early functional recovery after total hip arthroplasty using a direct anterior or posterolateral approach: a randomized controlled trial. J Arthroplasty. 2017;32(11):3421–3428. doi: 10.1016/j.arth.2017.05.056
  34. Agten CA, Sutter R, Dora C, et al. MR imaging of soft tissue alterations after total hip arthroplasty: comparison of classic surgical approaches. Eur Radiol. 2017;27(3):1312–1321. doi: 10.1007/s00330-016-4455-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Anatomy of the anterior region of the thigh (here and in Fig. 2–8: the photo was taken using cadaver material provided by Ekb_Cadaver_Lab at the Scientific and Educational Medical Center, Yekaterinburg): 1 — inguinal ligament (lig. inguinale), 2 — femoral artery (a. femoralis), 3 — femoral vein (v. femoralis), 4 — iliopsoas muscle (m. iliopsoas), 5 — femoral nerve (n. femoralis), 6 — sartorius muscle (m. sartorius), 7 — great saphenous vein (v. saphena magna), 8 — rectus femoris (m. rectus femoris).

Download (283KB)
3. Fig. 2. Anatomy of the anterior thigh: 1 — inguinal ligament (lig. inguinale), 2 — lateral cutaneous nerve of the thigh (lateral femoral cutaneous nerve), 3 — great saphenous vein (v. saphena magna).

Download (224KB)
4. Fig. 3. The neurovascular bundle of the anterior region of the thigh: 1 — branching of the femoral nerve, 2 — femoral artery (a. femoralis), 3 — femoral vein (v. femoralis).

Download (245KB)
5. Fig. 4. Anatomy of the femoral artery: 1 — femoral artery (a. femoralis), 2 — deep femoral artery (a. femoralis profunda), 3 — lateral artery that circumflexes the femur (a. circumflexa femoris lateralis).

Download (228KB)
6. Fig. 5. Anatomy of the anterior region of the thigh, deep layers: 1 — lateral artery that circumflexes the femur (a. circumflexa femoris lateralis), 2 — tailor muscle (m. sartorius), 3 — rectus femoris (m. rectus femoris).

Download (235KB)
7. Fig. 6. Anatomy of the gluteal region: 1 — gluteus maximus (m. gluteus maximus), 2 — ilio-tibial tract (tractus ilio-tibialis).

Download (362KB)
8. Fig. 7. Anatomy of the gluteal region: 1 — gluteus medius (m. gluteus medius), 2 — piriformis (m. piriformis), 3 — sciatic nerve (n. ischiadicus), 4 — muscle layer, consisting of the upper twin, internal obturator and lower twin muscles (mm. gemmeli sup. et inf., m. obturatorius internus), 5 — square muscle (m. quadratus), 6 — large trochanter (trochanter major).

Download (380KB)
9. Fig. 8. Anatomy of the gluteal region: 1 — small gluteal muscle (m. gluteus minimus), 2 — capsule of the hip joint.

Download (317KB)
10. Fig. 9. Images of multislice computed tomography, axial sections: a — bone mode, b — soft tissue mode, 1 — measurement of the wound depth in the anterior approach, 2 — measurement of the wound depth in the Harding approach.

Download (291KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies