Medical simulator for the training of traumatologists: pilot work

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Pelvic fractures are one of the most complex and fatal injuries because numerous large blood vessels are affected. They entail partial or complete loss of working capacity and have a high mortality rate. In medical practice, the number of pelvic fractures is fewer than that of other types of fractures, and specialists often lack practical experience and skills in the treatment. Thus, for the training, or advanced training of specialists, more serious theoretical training is required, which is unproductive without high-quality training simulators and models.

AIM: The study aimed to develop and manufacture an easy-to-use simulator that mimics human soft tissues and makes it possible to comprehensively prepare and educate specialists in the technique of installing an external fixation device for unstable pelvic fractures.

MATERIALS AND METHODS: To create the simulator, several main stages were completed: obtaining samples of the pelvic bones, making a mold for casting, and directly assembling the simulator. To obtain bone samples, computed tomography scans and magnetic resonance therapy images were used, on which a three-dimensional (3D) model of the pelvic bones was obtained. Based on this model, anatomically accurate copies of the pelvic bones were made using additive technologies. Then, a 3D digital computer model was developed, and a mold for casting the finished product was made. Bone samples were placed inside the mold, and the mold was gradually filled with a gelatin–glycerin compound, which after hardening mimics human soft tissues.

RESULTS: A prototype of a medical simulator for teaching the installation of the concomitant injury kit apparatus for unstable pelvic fractures was made.

CONCLUSION: The manufactured simulator can be widely used in educating and training specialists given its sufficiently high anatomical accuracy, ease of maintenance, and good potential for mass production.

About the authors

Timofey A. Paramonov

Military Innovation Technopolis «ERA»

Email: wfakgreenfurr@mail.ru

Сorporal, Senior Operator

Russian Federation, Anapa

Ilya V. Markin

Military Innovation Technopolis «ERA»

Email: ilya.markin.92@bk.ru
ORCID iD: 0000-0002-9334-910X
SPIN-code: 6021-7645

MD, Cand. Sci. (Tech.)

Russian Federation, Anapa

Vladimir R. An

Military Innovation Technopolis «ERA»

Email: vovan2011nsk@mail.ru
ORCID iD: 0000-0003-2459-4061

Corporal, Operator

Russian Federation, Anapa

Sergei V. Kushnarev

Kirov Military Medical Academy

Email: s.v.kushnarev@yandex.ru
ORCID iD: 0000-0003-2841-2990
SPIN-code: 5859-0480

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Pyotr K. Potapov

Military Innovation Technopolis «ERA»

Email: forwardspb@mail.ru
SPIN-code: 5979-4490

MD, Cand. Sci. (Med.)

Russian Federation, Anapa

Kirill A. Vedishchev

Military Innovation Technopolis «ERA»

Email: vedishevk@mail.ru
SPIN-code: 5649-7463

Corporal, Senior Operator

Russian Federation, Anapa

Natalia V. Varlamova

Military Innovation Technopolis «ERA»

Email: varlamova@tpu.ru
ORCID iD: 0000-0002-6100-2427
SPIN-code: 9139-6019

MD, Dr. Sci. (Tech.), Senior Researcher

Russian Federation, Anapa

Artur R. Muzafarov

Military Innovation Technopolis «ERA»

Email: arturmuzaf@yandex.ru

Corporal, Senior Operator

Russian Federation, Anapa

Renat R. Baykiev

Military Innovation Technopolis «ERA»

Email: baikievrenat@gmail.com

Corporal, Senior Operator

Russian Federation, Anapa

Evgeniy A. Zhurbin

Military Innovation Technopolis «ERA»

Email: zhurbin-90@mail.ru
ORCID iD: 0000-0002-0867-3838
SPIN-code: 8426-1354

MD, Cand. Sci. (Med.)

Russian Federation, Anapa

Denis A. Otavin

Military Innovation Technopolis «ERA»

Email: denizotavin@yandex.ru

Corporal, Senior Operator

Russian Federation, Anapa

Iraida A. Zabirova

Military Innovation Technopolis «ERA»

Author for correspondence.
Email: i.zabirova@yandex.ru

Engineer

Russian Federation, Anapa

References

  1. Litvina EA. Emergent Stabilization of Pelvic Bones Fractures in Polytrauma. N.N. Priorov Journal of Traumatology and Orthopedics. 2014;21(1):19–25. (In Russ). doi: 10.17816/vto20140119-25
  2. Agadzhanyan VV, Milyukov AYu, Pronskikh AA, et al. Otsenka rezul’tatov lecheniya bol’nykh, perenesshikh travmu taza. N.N. Priorov Journal of Traumatology and Orthopedics. 2002;(3):67–70. (In Russ).
  3. Bondarenko AV, Kruglykhin IV, Plotnikov IA, et al. Features of treatment of pelvic injuries in polytrauma. Polytrauma. 2014;(3):46–57. (In Russ).
  4. Besaev GM. Povrezhdeniya taza u postradavshikh s mnozhestvennoi i sochetannoi travmoi [dissertation]. St. Petersburg; 1999. (In Russ).
  5. Kryukov EV, Brizhan’ LK, Davydov DV, et al. Primenenie sovremennykh otechestvennykh komplektov dlya lecheniya ranenykh i postradavshikh s boevoi patologiei oporno-dvigatel’noi sistemy. 3rd Asia-Pacific Congress on Military Medicine; 2016 Aug 8–12; St. Petersburg, Russia. St. Petersburg; 2016. P. 80–81. Available from: https://mil.ru/medkongress.htm. Accessed: 13.01.2023. (In Russ).
  6. Donchenko SV, Dubrov VE, Slinyakov LYu, et al. Surgical treatment for unstable pelvic ring injuries. N.N. Priorov Journal of Traumatology and Orthopedics. 2013;20(4):9–16. (In Russ). doi: 10.17816/vto2013049-16
  7. Dragan KA. Lechenie pacientov s perelomami kostey taza. Abstracts of the International Conference «Travma 2017: mul`tidisciplinarny podhod»; 2017 Nov 3–4; Moscow, Russia. Moscow – Voronezh: Nauchnaya kniga; 2017. P. 36–37. Available from: https://2017.trauma.pro/public/uploads/TRAUMA_2017/TRAUMA_2017_abstracts.pdf. Accessed: 13.01.2023. (In Russ).
  8. Grin’ AA, Runkov AV, Shlykov IL. The choice of surgical approach in the treatment of two-column acetabular fractures. Traumatology and Orthopedics of Russia. 2014;20(1):92–97. (In Russ). doi: 10.21823/2311-2905-49
  9. Dydykin AV. Hirurgicheskaya stabilizaciya taza pri travmah. St. Petersburg; 2001. Research Report No. 200077, Item 5. (In Russ).
  10. Ahovuo JA, Kiuru MJ, Visuri T. Fatigue stress fractures of the sacrum: diagnosis with MR imaging. Eur Radiol. 2004;14(3):500–505. doi: 10.1007/s00330-003-1989-2
  11. Kushnarev SV, Zheleznyak IS, Kravchuk VN, et al. An application of 3D heart models created on DICOM data in medical practice. Diagnostic radiology and radiotherapy. 2020;11(3):7–13. (In Russ). doi: 10.22328/2079-5343-2020-11-3-7-13
  12. Stibolt RD Jr, Patel HA, Huntley SR, et al. Total hip arthroplasty for posttraumatic osteoarthritis following acetabular fracture: A systematic review of characteristics, outcomes, and complications. Chin J Traumatol. 2018;21(3):176–181. doi: 10.1016/j.cjtee.2018.02.004
  13. Dyatlov MM. Slozhnye povrezhdenia taza. Chto delat’? Gomel: GomGMU; 2006. P. 69–74. (In Russ).
  14. Timofeev ME, Shapoval’yants SG, Polushkin VG, et al. Medical simulators: history of development, classification, results of application, organization of simulation education. Vestnik NovSU. 2015;85(2):53–59. (In Russ).
  15. Kushnarev SV, Shirnin AV. Creation of three-dimensional physical models based on CT images (first experience). Izvestia of the Russian Military Medical Academy. 2018;37(4):53–56. (In Russ).
  16. Vilchevskaya AE, Lobova AN, Suvorov VV. Sozdanie 3D modeli serdtsa. Proceedings of a scientific conference with international participation «Nedelya nauki SPbPU»; 18–23 Nov, 2019; St. Petersburg, Russia. St. Petersburg: POLITEKh-PRESS; 2019. P. 139–141. Available from: https://www.elibrary.ru/download/elibrary_43055538_98862588.pdf. Accessed: 13.01.2023. (In Russ).
  17. Belodedov VE. Rekonstruktsiya cherepa cheloveka na osnove analiza KT-izobrazhenii. Collection of articles based on the materials of the CCXV International scientific and practical conference «Molodoi issledovatel’: vyzovy i perspektivy»; 7 Jun, 2021; Moscow, Russia. Moscow: Internauka; 2021. P. 497–500. Available from: https://www.elibrary.ru/item.asp?id=46256199. Accessed: 13.01.2023. (In Russ).
  18. Nikitina LL, Gavrilova OE. Prospects for the use of modern 3D printing technologies in the production of light industry products made of polymer materials. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015;18(7):224–226. (In Russ).
  19. Nikitin AS, Zorin VA, Timofeeva AG. Analysis of the possibility of using modified secondary ABS plastic in the production of parts of transport and technological machines. Mekhanizatsiya i avtomatizatsiya stroitel’stva. 2020:191–196. Available from: https://www.elibrary.ru/download/elibrary_44616542_72474801.pdf. Accessed: 13.01.2023. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the manufacturing of the simulator.

Download (358KB)
3. Fig. 2. A sample of the obtained 3D-model of the pelvis and hip bones.

Download (56KB)
4. Fig. 3. Printing of bone samples by layer-by-layer fusing.

Download (108KB)
5. Fig. 4. Finished samples of the bones of the hip.

Download (166KB)
6. Fig. 5. Casting mold in finished form and at the modeling stage.

Download (119KB)
7. Fig. 6. Test sample of the casting composition option 1.

Download (73KB)
8. Fig. 7. Test sample of the second version of the casting composition.

Download (85KB)
9. Fig. 8. Filling the form with gelatin-glycerin composition.

Download (160KB)
10. Fig. 9. Concomitant injury kit simulator after removing the casting mold.

Download (171KB)

Copyright (c) 2023 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies