Experimental and Mathematical Modeling of Borderline Changes in the Brain under Radiation Exposure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In model experiments on rats irradiated in doses and exposure regimes comparable to those in the liquidators of the consequences of the Chernobyl accident, changes in neurons of various parts of the brain were studied depending on the dose of Y-irradiation and the dose rate of exposure. It was established that throughout the experiment, both in control and irradiated animals, undulating changes were observed in various neuromorphological parameters of nerve cells with stochastic extrema in separate dose-time intervals. In a number of cases, the changes were of a borderline nature, when they were no longer the norm and at the same time were not yet a pathology. Although the level of significance of such changes fluctuated in relation to the age control within functionally insignificant limits, their presence testified to the instability of the structural and functional organization of nerve cells and the intensity of functioning. At the same time, γ- irradiation had a grea-ter influence on the change in most indicators of the state of neurons than the time of the recovery period, which indicated a rather high response of nerve cells to radiation exposure. Over time, changes in nerve cells were repaired and their parameters corresponded to the age control. It should be assumed that with an increase in the dose or dose rate of radiation exposure, as well as against the background of other harmful and dangerous factors associated with radiation accidents, changes in neurons will become more unidirectional.

作者简介

V. Fedorov

Voronezh State Academy of Sports

编辑信件的主要联系方式.
Email: fedor.vp@mail.ru
Russia, Voronezh

I. Ushakov

State Research Center – A.I. Burnazyan Federal Medical Biophysical Center FMBA of Russia; A.M. Nikiforov All-Russian Center for Emergency and Radiation Medicine V.I. EMERCOM of Russia

Email: fedor.vp@mail.ru
Russia, Moscow; Russia, St. Petersburg

参考

  1. Гундарова О.П., Федоров В.П., Кварацхелия А.Г. Мозжечок и радиация. М.: Научная книга, 2021. 312 с. [Gundarova O.P., Fedorov V.P., Kvaratskhelia A.G. The cerebellum and radiation. Moscow: Nauchnaya kniga, 2021. 312 р. (In Russ.)]
  2. Жирник А.С., Смирнова О.Д., Сёмочкина Ю.П. и др. Нарушение когнитивных функций и развитие нейровоспаления в отдаленный период после однократного γ-облучения головы мышей // Радиац. биология. Радиоэкология. 2021. Т. 61. № 1. С. 32–43 [Zhirnik A.S., Smirnova O.D., Syomochkina Yu.P. et al. Cognitive Impairment and Induction of Neuroinflammation in the Late Period after Single Whole Brain γ-Irradiation of Mice // Radiacionnaya biologiya. Radiojekologiya. 2021. V. 61. №1. P. 32–43. (In Russ.)]
  3. Ушаков И.Б., Федоров В.П. Малые радиационные воздействия и мозг. Воронеж: Научная книга, 2015. 536 c. [Ushakov I.B., Fedorov V.P. Small radiation exposure and the brain. Voronezh: Scientific book, 2015. 536 p. (In Russ.)]
  4. Tang F.R., Loke W.K., Khoo B.C. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models // J. Radiat. Res. 2016. V. 58. № 2. P. 165–82.
  5. Terry C. Burns, Ahmed J. Awad, Matthew D. Li, Gerald A. Radiation-induced brain injury: low-hanging fruit for neuroregeneration // Neurosurg. Focus. 2016. V. 40. № 5. P. E3.
  6. Асташова А.Н., Федоров В.П., Ушаков И.Б. Радиационные риски в авиации. История и современность. Воронеж: Научная книга, 2019. 396 c. [Astashova A.N., Fedorov V.P., Ushakov I.B. Radiation risks in aviation. History and modernity. Voronezh: Scienti-fic book, 2019. 396 p. (in Russ.)]
  7. Ушаков И.Б., Федоров В.П. Радиационные риски вертолетчиков при ликвидации последствий аварии на Чернобыльской АЭС: Ранние и отдаленные нарушения здоровья // Медицина катастроф. 2021. № 3. P. 52–57. [Ushakov I.B., Fedorov V.P. Radiation risks of helicopter pilots during the liquidation of the consequences of the accident at the Chernobyl nuclear power plant: early and long-term health problems // Disaster Medicine. 2021. № 3. P. 52–57. (In Russ.)]
  8. Федоров В.П. Риск церебральных нарушений при пролонгированных малых радиационных воздействиях // Вестн. Рос. Воен.-мед. академии. 2018. Т. 63. № 3. С. 111–113 [Fedorov V.P. The risk of cerebral disorders during prolonged low radiation exposure // Bulletin of the Russian Military Medical Academy. 2018. V. 63. № 3. P. 111–113. (In Russ.)]
  9. Левашкина И.М., Алексанин С.С., Серебрякова С.В., Грибанова Т.Г. О влиянии малых и средних доз радиации на структуру проводящих путей головного мозга у ликвидаторов последствий аварии на ЧАЭС в отдаленном периоде (по данным высокопольной рутинной и диффузионно-тензорной магнитнорезонансной томографии) // Радиац. гигиена. 2017. Т. 10. № 4. С. 23–30. [Levashkina I.M., Aleksanin S.S., Serebryakova S.V., Gribanova T.G. On the influence of low and medium doses of radiation on the structure of the conduction pathways of the brain in the liquidators of the consequences of the Chernobyl accident in the long term (according to high-field routine and diffusion-tensor magnetic resonance imaging) // Radiation Hygiene. 2017. V. 10. № 4. P. 23–30. (In Russ.)]
  10. Торубаров Ф.С., Кулешова М.В., Лукьянова С.Н. и др. Спектрально-корреляционный анализ ЭЭГ у ликвидаторов аварии на ЧАЭС с неврологическими нарушениями // Мед. радиология и радиац. безопасность. 2019. Т. 64. № 3. С. 40–45 [Torubarov F.S., Kuleshova M.V., Lukyanova S.N. et al. Spectral-correlation analysis of EEG in liquidators of the Chernobyl accident with neurological disorders // Medical Radiology and Radiation Safety. 2019. V. 64. № 3. P. 40–45 (In Russ.)]
  11. Шамрей В.К., Чистякова Е.И., Матыщина Е.Н. и др. Радиационная психосоматическая болезнь у ликвидаторов последствий аварии на Чернобыльской АЭС // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2016. № 1. С. 21–33 [Shamrey V.K., Chistyakova E.I., Matyshchina E.N. et al. Radiation psychosomatic disease in the liquidators of the consequences of the accident at the Chernobyl nuclear power plant // Medico-biological and socio-psychological problems of safety in emergency situations. 2016. № 1. P. 21–33. (In Russ.)]
  12. Федоров В.П., Петров А.В., Степанян Н.А. Экологическая нейроморфология. Классификация типовых форм морфологической изменчивости ЦНС при действии антропогенных факторов // Журн. теор. и практ. медицины. 2003. № 1. С. 62–66 [Fyodorov V.P., Petrov A.V., Stepanyan N.A. Ecological geomorphology. Classification of typical forms of morphological variability of the Central nervous system under the action of anthropogenic factors // Journal of theoretical and practical medicine. 2003. P. 1. P. 62–66 (In Russ.)]
  13. Федоров В.П., Ушаков И.Б., Асташова А.Н. Обоснование и разработка моделей для оценки церебральных последствий у летного состава после работ на радиоактивно загрязненной местности: Мат. науч.-практ. конф. “Актуальные проблемы авиационной и космической медицины”. СПб.: ВМА, 2018. С. 294–296 [Fedorov V.P., Ushakov I.B., Astashova A.N. Substantiation and development of models for assessing the cerebral consequences of flight crews after work on radioactively contaminated areas: Proceedings of the scientific-practical conference “Actual problems of aviation and space medicine”. St. Petersburg: VMA, 2018. P. 294–296. (In Russ.)]
  14. Cucinotta F.A. Review of NASA approach to space radiation risk assessments for Mars exploration // Health Phys. 2015. V. 108. №. P. 131–142.
  15. Suman Shubhankar, Rodriguez Olga C., Winters Thomas A. et al. Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production // Aging (Albany NY). 2013. V. 5. № 8. P. 607–622. https://doi.org/10.18632/aging.100587
  16. Ушаков И.Б., Федоров В.П. Радиационно-индуцированные изменения содержания ДНК и РНК в нейронах головного мозга // Мед. радиология и радиац. безопасность. 2021. Т. 66. № 1. С. 5–12 [Ushakov I.B., Fedorov V.P. Radiation-induced changes in DNA and RNA content in brain neurons // Medical radiology and radiation safety. 2021. V. 66. № 1. P. 5–12. (In Russ)]
  17. Ushakov I.B., Fedorov V.P., Komarevtsev V.N., Dyachkov A.A. Comparative evaluation of neuromorphological effects in single doses and fractionated radiation in small doses // Biomed. J. Sci. & Techn. Res. 2019. V. 13. № 2. P. 1–3. ISSN: 2574–1241. (In Russ.)https://doi.org/10.26717/BJSTR.2019.13.002389
  18. Ushakov I.B., Fedorov V.P., Komarevtsev V.N. Changes in the Content of Nucleic Acids in Brain Neurons under Various Modes of Low Radiation Exposure // Am. J. Biomed. Sci. & Res. 2020. V. 9. № 2. P. 137–138. (In Russ.)
  19. Видные отечественные ученые в области радиобиологии, радиационной медицины и безопасности (Биобиблиографический справочник) / Под общей редакцией Л.А. Ильина, А.С. Самойлова, И.Б. Ушакова. М.: ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России, 202. 616 p. [Prominent domestic scientists in the field of radiobiology, radiation medicine and safety (Biobibliographic reference book) / Under the general editorship of L.A. Ilyina, A.S. Sa-moilova, I.B. Ushakov. Moscow: FGBU GNTs FMBTS im. A. I. Burnazyan FMBA of Russia, 2021. 616 p. (In Russ.)]
  20. Даренская Н.Г., Ушаков И.Б., Иванов И.В. От эксперимента на животных – к человеку: Поиски и решения. Воронеж: Научная книга, 2010. 237 c. [Darenskaya N.G., Ushakov I.B., Ivanov I.V. From animal experiments to humans: searches and solutions. Voronezh: Nauchnaya kniga, 2010. 237 p. (In Russ.)]
  21. Котеров А.Н., Ушенкова Л.Н., Зубенкова Э.С. и др. Соотношение возрастов основных лабораторных животных (мышей, крыс, хомячков и собак) и человека: Актуальность для проблемы возрастной радиочувствительности и анализ опубликованных данных // Мед. радиология и радиац. безопасность. 2018. V. 63. № 1. P. 5–32 [Koterov A.N., Ushenkova L.N., Zubenkova E.S. et al. The ratio of the ages of the main laboratory animals (mice, rats, hamsters and dogs) and humans: relevance for the problem of age-related radiosensitivity and analysis of published data // Medical Radiology and Radiation Safety. 2018. V. 63. № 1. P. 5–32. (In Russ.)]
  22. Гундарова О.П., Федоров В.П., Кварацхелия А.Г., Маслов Н.В. Сравнительная характеристика изменений нейронов головного мозга при однократном и пролонгированном радиационном воздействии // Журн. анатомии и гистопатологии. 2021. Т. 10. № 3. С. 35–46 [Gundarova O.P., Fedorov V.P., Kvaratskhelia A.G., Maslov N.V. Comparative characteristics of changes in brain neurons under single and prolonged exposure to radiation // Journal of Anatomy and Histopathology. 2021. V. 10. № 3. P. 35–46. (In Russ.)]
  23. Ушаков И.Б., Федоров В.П., Сгибнева Н.В. Нейроморфологические корреляты мощности дозы радиационного воздействия // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2019. № 4. С. 24–34 [Ushakov I.B., Fedorov V.P., Sgibneva N.V. Neuromorphological correlates of the dose rate of radiation exposure // Medico-biological and socio-psychological problems of safety in emergency situations. 2019. № 4. P. 24–34. (In Russ.)]
  24. Hada M., Georgakilas A.G. Formation of clustered DNA damage after high LET irradiation: A review // J. Radiat. Res. 2010. V. 49. P. 203–208.
  25. James A., Wang Y., Raje H. Nucleolar stress with and without p53 // Nucleus. 2014. V. 5. P. 402–426.
  26. Штемберг А.С. Нарушения высшей нервной деятельности крыс в процессе длительного гамма-облучения // Авиакосм. и экол. медицина. 2005. Т. 39. № 4. P. 50–52 [Shtemberg A.S. Disorders of the higher nervous activity of rats during prolonged gamma irradiation // Aerospace and ecological medicine. 2005. V. 39. № 4. P. 50–52. (In Russ.)]
  27. Acharya M.M., Lan M.L., Kan V.H. et al. Consequences of ionizing radiation-induced damage in human neural stem cells // Free Rad. Biol. Med. 2010. V. 49. № 12. P. 1846–1855.
  28. Desouky O., Ding N., Zhou G. Targeted and non-targeted effects of ionizing radiation // J. Radiat. Res. Appl. Sci. 2015. V. 8. № 2. P. 247–254.
  29. Greene-Schloesser D., Robbins M. E., Peiffer A.M. et al. Radiation-induced brain injury: a review // Front. Oncol. 2012. V. 2. № 73. P. 1–18.
  30. UNITED NATIONS. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex C. Non-targeted and delayed effects of exposure to ioni-zing radiation. New York: United Nations, 2009. P. 1–79.
  31. Greene-Schloesser D., Robbins M.E. Radiation-induced cognitive Impairment–from bench to bedside // Neuro Oncol. 2012. V. 14. № 4. P. 37–44.
  32. Kempf S.J., Sepe S., Toerne C., Janik D. et al. Neonatal Irradiation Leads to Persistent Proteome Alterations Involved in Synaptic Plasticity in the Mouse Hippocampus and Cortex // J. Proteome Res. 2015. V. 14. P. 4674–4686.
  33. Greene-Schloesser D., Robbins M.E., Peiffer A.M. et al. Radiation-induced brain injury: A review // Front. Oncol. 2012. V. 19. № 2. P. 73. https://doi.org/10.3389/fonc.2012.00073
  34. Britten R.A., Davis L.K., Johnson A.M. et al. Low (20 cGy) Doses of 1 GeV/u 56Fe-Particle Radiation Lead to a Persistent Reduction in the Spatial Learning Ability of Rats // Radiat. Res. 2012. V. 177. № 2. P. 146–151. https://doi.org/10.1667/RR2637.1
  35. Zhuang H., Zheng Y., Wang J. et al. Analysis of risk and predictors of brain radiation necrosis after radiosurgery // Oncotarget. 2016. V. 7. № 7. P. 7773–7779. https://doi.org/10.18632/oncotarget.6532
  36. Sharma M., Balasubramanian S., Silva D. et al. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: An overview // Expert Rev. Neurother. 2016. V. 16. № 2. P. 223–232. https://doi.org/10.1586/14737175.2016.1135736
  37. Forbes M.E., Paitsel M., Bourland J.D. et al. Earlydelayed, radiation-induced cognitive deficits in adult rats are heterogeneous and age-dependent // Radiat. Res. 2014. V. 182. P. 60–71.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (387KB)
3.

下载 (631KB)
4.

下载 (576KB)
5.

下载 (559KB)
6.

下载 (509KB)

版权所有 © В.П. Федоров, И.Б. Ушаков, 2022

##common.cookie##