Eastern-Urals radioactive trace as a source of genetic diversity in rodents populations at adjacent territories

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Firstly, polymorphism of gene cytochrome b’(cytb) fragment of mitochondrial DNA (mtDNA ) and migratory activity of red-backed voles (Myodes rutilus Pallas, 1779) at zone of local radioactive pollution – Eastern-Urals radioactive trace zone (EURT) are investigated. More high haplotype diversity in both samples from EURT zone and adjacent background territory (9–10 km) as compared with the reference one (220 kms) was found. Moreover nucleotide diversity and average number of pair distinctions between haplotypes were greatest in voles from contiguous site with background radiation level. Our hypothesis about association genetic diversity with rodents’ migrations from EURT zone were verified in field experiments employing group marking of population by biomarker rhodamine B. Migrants (males and females) of different functional status at background sites were revealed. Long-distance movements (9500 m) are maximal known for M. rutilus. EURT zone is a source of genetic diversity in rodents populations on adjacent territories due to interpopulation gene flows patterns (radiation-induced effects) carrying by migrants. MtDNA can be served as an effective biomarker of radionuclide exposure in natural environment. Сombining usage of ecological and molecular biomarkers is expediently for monitoring in rodents inhabiting zones of local radionuclides pollution.

Авторлар туралы

Elena Grigorkina

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: grigorkina@ipae.uran.ru
ORCID iD: 0000-0002-8797-6211
Ресей, Ekaterinburg

Sergey Rakitin

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: grigorkina@ipae.uran.ru
ORCID iD: 0000-0002-5575-4681
Ресей, Ekaterinburg

Grigory Olenev

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: olenev@ipae.uran.ru
ORCID iD: 0000-0002-8896-7915
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Aarkrog A., Dahlgaard H., Nielsen S.P. et al. Radioactivity inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995). Sci. Total Environ. 1997;201:137–154.
  2. Grigorkina E.B., Olenev G.V. Migrations of rodents in the zone of local radioactive contamination at different phases of population dynamics and their consequences. Biol. Bull. 2018;45(1):110–118. https://doi.org/10.7868/S0002332918010150
  3. Grigorkina E.B. Olenev G.V. Radioadaptation of rodents in the zone of local radioactive contamination (Kyshtym Accident, Russia): 50 years on. Radioprotection. 2009;44(5):129–134. https://doi: 10/1051/radiopro/20095028
  4. Fisher P. Review of using Rhodamine B as a marker for wildlife studies. Wildl. Soc. Bull. 1999;27:318–329.
  5. Толкачев О.В., Беспамятных Е.Н. Новый метод детекции родаминовой метки и возможности его применения в зоологических исследованиях. Журнал СФУ. Биология. 2019;12(4):352-365. [Tolkachev O.V., Bespamyatnykh E.N. The new method of rhodamine mark detection and its application possibilities in zoological studies. Zhurnal Sibirskogo Federalnogo Universiteta. Seriya Biologiya. 2019;12(4):352–365 (In Russ)]. https://doi.org/10.17516/1997-1389-0051
  6. Sram R.J. Future research directions to characterize Environmental mutagens in highly polluted areas. Environ. Health Perspect. 1996;104(3):603–607.
  7. Bickham J.W., Sandhu S., Hebert P.D.N. et al. Effects of chemical contaminants on genetic diversity in natural population: implications for biomonitoring and ecotoxicology. Mutat. Res. 2000;463:33–51.
  8. Алтухов Ю.П., Салменкова Е.А. Полиморфизм ДНК в популяционной генетике. Генетика. 2002;38(9):1173–1195. [Altuchov Yu.P., Salmenkova E.A. DNA polymorphism in population genetic. Genetica. 2002;38(9):1173–1195. (In Russ.)]
  9. Geras’kin S.A., Volkova P.Y. Genetic diversity in Scots pine populations along a radiation exposure gradient. Sci. Total Environ. 2014;496:317–327. www.elsevier.com/locate/scitotenv
  10. Животовский Л.А. Две ветви исследований популяционной структуры вида – экологическая и генетическая: история, проблемы, решения. Генетика. 2017;53(11):1244–1253. [Zhivotovsky L.A. Two branches – ecological and genetic – in studying the species population structure: history, problems, and solutions. Genetica. 2017;53(11):1244–1253. (In Russ.)]
  11. Газиев А.И., Подлуцкий А.Я. Низкая эффективность систем репарации ДНК в митохондриях. Цитология. 2003;Т. 45(4):403–417. [Gaziev A.I., Podlutsky A.Ya. Low efficiency of DNA repair systems in mitochondria a review. Tsitologia. 2003;45(1):403–417. (In Russ.)]
  12. Theodarakis C.W., Bickham J.W., Lamb T. et al. Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA. Environ. Toxicol. Chem. 2001;20(2):317–326.
  13. Baker R.J., Dickins B.,Wickliffe J.K. et al. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evolut. Applicat. 2017;10:784–791.
  14. Molchanova I., Mikhailovskaya L., Antonov K. et al. Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace. J. Environ. Radioact. 2014;138(6):238−248. www.elsevier.com/locate/jenvrad
  15. Aljanabi S. M., Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl. Acids Res. 1997;25(22):4692–4693.
  16. Ракитин С.Б., Копориков А.Р., Богданов В.Д. и др. Изменчивость микросателлитной ДНК налима (Lota Lota) Обь-Иртышского бассейна: тестирование праймеров и оптимизация методики. Вестн. АГТУ. Сер. Рыбное хозяйство. 2013;3:118–128. [Rakitin S. B., Koporikov A. R., Bogdanov V. D. et al. Variation of microsatellite DNA of burbot (Lota Lota) of the Ob-Irtysh basin: testing of primers and optimization if the method. Vestnik AGTU. Seria: Rybnoe chozyaistvo. 2013(3):118–128. (In Russ.)]
  17. Абрамсон Н.И., Родченкова Е.Н., Костыгов А.Ю. Генетическая изменчивость и филогеография рыжей полевки (Clethrionomys glareolus, Arvicolinae, Rodentia) на территории России с анализом зоны интрогрессии мтДНК близкородственного вида – красной полевки (Cl. rutilus). Генетика. 2009;45(5):610–623. [Abramson N.I., Rodchenkova E.N., Kostygov A.Yu. Genetic variation and phylogeography of bank vole (Clethrionomys glareolus, Arvicolinae, Rodentia) in Russia with special reference to the introgression of the mtDNA of a closely related species, red backed vole (Cl. rutilus). Genetica. 2009;45(5):610–623. (in Russ.)]
  18. Hall T.A. Bio-Edit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Sympos. Ser. 1999;41:95-98.
  19. Tamura K., Peterson D., Peterson N. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec. Biol. Evolut. 2011;28(10):2731–2739.
  20. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resources. 2010;10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  21. Olenev G.V. Determining the age of cyclomorphic rodents: functional–ontogenetic determination, ecological aspects. Rus. J. Ecol. 2009; 40(2):93–104. https://doi: 10.1134/S1067413609020040
  22. Jacob J., Jones D.A., Singleton G.R. Retention of the bait marker Rhodamine B in wild house mice. Wildl. Res. 2002;29:159–164.
  23. Kozakiewicz M., Cho£uj A., Kozakiewicz A. Long-distance movements of individuals in a free-living bank vole population: an important element of male breeding strategy. Acta Theriologica. 2007;52(4):339–348.
  24. Howard W.E. Innate and environmental dispersal of individual vertebrates. American Midland Naturalist. 1960;63:152–161.
  25. Fichet-Calvet E. Persistence of a systemic labelling in fur and guard hairs by ingestion of rhodamine B in Myocastor coypus (Rodentia). Mammalia. 1999;63:241–244.
  26. Lidicker W.Z. Jr. Dispersal. The American Society of Mammalogists. Spec. Public. 1985;8:420–454.
  27. Щипанов Н.А., Купцов А.В. Нерезидентность у мелких млекопитающих и ее роль в функционировании популяции. Успехи современной биологии. 2004;124(1): 28–43. [Shchipanov N.A., Kuptsov A.V. Nonresidence in small mammals and its role in the functioning of populations. Uspekhi sovremennoi biologii. 2004;124(1):28–43. (In Russ.)]
  28. Malinovsky G.P., Yarmoshenko I.V., Starichenko V.I. et al. Assessment of radiation exposure of murine rodents at the EURT territories. Centr. Eur. J. Biol. 2014;9(10):960‒966. https://doi: 10.2478/s11535-014-0321-2
  29. Sources effects and risks of ionizing radiation. UNSCEAR 2008 Report to General Assemly with Scientific Annexes. New York: UNSCEAR. 2011. 219 p.
  30. Григоркина Е.Б., Пашнина И.А. К проблеме радиоадаптации мелких млекопитающих (экологическая специализация вида, радиорезистентность, гемопоэз, иммунитет). Радиац. биология. Радиоэкология. 2007;47(3): 371‒378. [Grigorkina E.B., Pashnina I.A. On the Problem of Radioadaptation in Small Mammals (Ecological specialization of a species, radioresistance, hemopoiesis, immunity). Radiatsionnaya Biologiya. Radioecologiya. 2007;47(3):371–378. (In Russ.)]
  31. Yalkovskaya L.E., Grigorkina E.B., Tarasov O.V. Cytogenetic consequences of chronic irradiation in rodent populations inhabiting the Eastern Ural Radioactive Trace zone. Biophysics. 2011;56(1):140–144. https:doi: 10.1134/S0006350911010258
  32. May A., Bohr V.A. Gene-specific repair of gamma-ray-induced DNA strand breaks in colon cancer cells no coupling to transpiration and no removal from the mitochondrial genome. Biochem. Biophys. Res. Commun. 2000;269: 433–437.
  33. Chung H.C., Kim S.H., Lee M.C. et al. Mitochondrial disfunction by gamma irradiation accompanies the induction of cytochrome P450 2 EI (CYP2EI) in rat liver. Toxicology. 2001;161:79–91.
  34. Rakitin S.B., Grigorkina E.B., Olenev G.V. Analysis of microsatellite DNA in rodents from Eastern Urals radioactive trace zone and contiguous territories. Rus. J. Genet. 2016;52(4):398–404. https://doi: 10.1134/S1022795416030121
  35. Gileva E.A., Lyubashevskii N.M., Starichenko V.I. et al. Hereditary chromosome instability in common vole (Microtus arvalis) from the region of the Kyshtym Nuclear Meltdown: fact or hypothesis? Rus. J. Genetics. 1996;32(1):99–104.
  36. Ronce O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 2007;38:231–253.

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>