Calculation of Radiation-induced DNA Damage Efficiency. Analysis of Uncertainties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Computer simulations of the DNA damage are widely used due to their large application area. The computational methods to predict DNA breaks are based on molecular concepts about the formation of breaks, the geometric structure of DNA, as well as information about the distribution of absorbed energy in a DNA mo-lecule. Since the calculations use different postulates and algorithms, it is often difficult to make intercompa-rison between theoretical results in the literature. Due to the spread of experimental data on DNA breaks, the determination of parameters of DNA lesion models from the data is not straightforward. In this paper, a comparative analysis of two basic models of DNA structure, molecular and enlarged subvolume, various schemes for the formation of single- and double-strand DNA breaks, as well as different classifications of the break complexity after irradiation with protons and α-particles is performed. Numerical results on initial radiation-induced DNA damage due to direct and quasi-direct action demonstrate the dependence on variation of model parameters. The parameter values where the two models agree or differ are discussed.

Авторлар туралы

Yu. Eidelman

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; National Research Nuclear University MEPHI

Email: andreev_sg@mail.ru
Russia, Moscow; Russia, Moscow

I. Salnikov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: andreev_sg@mail.ru
Russia, Moscow

S. Andreev

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; National Research Nuclear University MEPHI

Хат алмасуға жауапты Автор.
Email: andreev_sg@mail.ru
Russia, Moscow; Russia, Moscow

Әдебиет тізімі

  1. Fairbairn D.W., Olive P.L., O’Neill K.L. The comet assay: a comprehensive review // Mutat. Res. 1995. V. 339. № 1. P. 37–59. https://doi.org/10.1016/0165-1110(94)00013-3
  2. Stenerlöw B., Blomquist E., Grusell E. et al. Rejoining of DNA double-strand breaks induced by accelerated nitrogen ions // Int. J. Radiat. Biol. 1996. V. 70. № 4. P. 413–420. https://doi.org/10.1080/095530096144888
  3. Stenerlöw B., Höglund E., Carlsson J., Blomquist E. Rejoining of DNA fragments produced by radiations of different linear energy transfer // Int. J. Radiat. Biol. 2000. V. 76. № 4. P. 549–57.https://doi.org/10.1080/095530000138565
  4. Ivashkevich A.N., Martin O.A., Smith A.J. et al. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis // Mutat. Res. 2011. V. 711. № 1–2. P. 49–60. https://doi.org/10.1016/j.mrfmmm.2010.12.015
  5. Charlton D.E., Nikjoo H., Humm J.L. Calculation of initial yields of single- and double-strand breaks in cell nuclei from electrons, protons and alpha particles // Int. J. Radiat. Biol. 1989. V. 56. № 1. P. 1–19. https://doi.org/10.1080/09553008914551141
  6. Pomplun E. A new DNA target model for track structure calculations and its first application to I–125 Auger electrons // Int. J. Radiat. Biol. 1991. V. 59. № 3. P. 625–642. https://doi.org/10.1080/09553009114550561
  7. Khvostunov I.K., Andreev S.G., Pitkevich V.A., Chepel V.Yu. Novel algorithm for analysis of DNA and chromatin damage induced by ionising with different quality // Proc. of 10th Int. Congr. Radiation Research / Eds U. Hagen, D. Harder, H. Jung, C.S. Streffer. Wurzburg, 1995. V. 2. P. 254–257.
  8. Friedland W., Jacob P., Paretzke H.G., Stork T. Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models // Radiat. Res. 1998. V. 150. № 2. P. 170–182. https://doi.org/10.2307/3579852
  9. Nikjoo H., O’Neill P., Wilson W.E., Goodhead D.T. Computational approach for determining the spectrum of dNA Damage induced by ionizing radiation // Radiat. Res. 2001. V. 156. №5. Part 2. P. 577–583. https://doi.org/10.1667/0033-7587(2001)156[0577:cafdts]2.0.co;2
  10. Henthorn N.T., Warmenhoven J.W., Sotiropoulos M. et al. Nanodosimetric simulation of direct ion-induced DNA damage using different chromatin geometry models // Radiat. Res. 2017. V. 188. № 6. P. 690–703. https://doi.org/10.1667/RR14755.1
  11. Zhu H., McNamara A.L., McMahon S.J. et al. Cellular response to proton irradiation: a simulation study with TOPAS-nBio // Radiat. Res. 2020. V. 194. № 1. P. 9–21. https://doi.org/10.1667/RR15531.1
  12. Kyriakou I., Sakata D., Tran H.N. et al. Review of the Geant4-DNA Simulation toolkit for radiobiological applications at the cellular and DNA level // Cancers (Basel). 2021. V. 14. № 1. P. 35. https://doi.org/10.3390/cancers14010035
  13. Shin W.-G., Sakata D., Lampe N. et al. A Geant4-DNA evaluation of radiation-induced DNA damage on a human fibroblast // Cancers (Basel). 2021. V. 13. № 19. P. 4940. https://doi.org/10.3390/cancers13194940
  14. Mokari M., Moeini H., Soleimani M. et al. Calculation of microdosimetric spectra for protons using Geant4-DNA and a μ-randomness sampling algorithm for the nanometric structures // Int. J. Radiat. Biol. 2021. V. 97. № 2. P. 208–218. https://doi.org/10.1080/09553002.2021.1854488
  15. Friedland W., Jacob P., Bernhardt P. et al. Simulation of DNA damage after proton irradiation // Radiat. Res. 2003. V. 159. № 3. P. 401–410. https://doi.org/10.1667/0033-7587(2003)159[0401:soddap]2.0.co;2
  16. Incerti S., Baldacchino G., Bernal M. et al. The Geant4-DNA project // Int. J. Model. Simul. Sci. Comput. 2010. V. 1. № 2. P. 157–178. https://doi.org/10.1142/S1793962310000122
  17. Chandrasekaran R., Arnott S. The structure of B-DNA in oriented fibers // J. Biomolec. Struct. Dynam. 1996. V. 13. № 6. P. 1015–1027. https://doi.org/10.1080/07391102.1996.10508916
  18. ICRU report 49. Stopping powers and ranges for protons and alpha particles. International Commission on Radiation Units and Measurements, Bethesda, Maryland, USA, 1993. 295 p.
  19. Андреев С.Г., Эйдельман Ю.А., Хвостунов И.К. и др. Биофизическое моделирование радиационных повреждений генетических структур клетки // Радиац. биология. Радиоэкология. 2005. Т. 45. № 5. С. 549–560. [Andreev S.G., Eidelman Yu.A., Salnikov I.V., Khvostunov I.K. et al. The biophysical modeling of radiation induced genetic damage // Radiats. Biol. Radioecol. 2005. V. 45. № 5. P. 549–560. (In Russ.)]
  20. Andreev S.G., Eidelman Yu.A., Salnikov I.V., Khvostu-nov I.K. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis // Radiat. Prot. Dosim. 2006. V. 122. № 1–4. P. 335–339. https://doi.org/10.1093/rpd/ncl463
  21. Prise K.M., Ahnström G., Belli M. et al. A review of dsb induction data for varying quality radiations // Int. J. Radiat. Biol. 1998. V. 74. № 2. P. 173–184. https://doi.org/10.1080/095530098141564
  22. Frankenberg D., Brede H.J., Schrewe U.J. et al. Induction of DNA double-strand breaks by 1H and 4He lons in primary human skin fibroblasts in the LET range of 8 to 124 keV/microm// Radiat. Res. 1999. V. 151. № 5. P. 540–549. https://doi.org/10.2307/3580030
  23. Belli M., Cherubini R., Dalla Vecchia M. et al. DNA DSB induction and rejoining in V79 cells irradiated with light ions: a constant field gel electrophoresis study // Int. J. Radiat. Biol. 2000. V. 76. № 8. P. 1095–1104. https://doi.org/10.1080/09553000050111569

Қосымша файлдар


© Ю.А. Эйдельман, И.В. Сальников, С.Г. Андреев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>