Role of Bioenergy Effects of Cystamine in Realising Potentiation of Radioprotective Properties of the Radioprotector in its Repeated Administration
- Authors: Vasin M.V.1,2, Ushakov I.B.3, Afanasyev R.V.2
-
Affiliations:
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation
- Research and Testing Center (Aerospace Medicine and Military Ergonomics) Central Research Institute of the Air Force of the Ministry of Defense of the Russian Federation
- State Scientific Center – A.I. Burnazyan Federal Medical Biophysical Center of the FMBA of the Russian Federation
- Issue: Vol 64, No 5 (2024)
- Pages: 489–498
- Section: Modification of Radiation Effects
- URL: https://journals.rcsi.science/0869-8031/article/view/273911
- DOI: https://doi.org/10.31857/S0869803124050048
- EDN: https://elibrary.ru/LNVYNF
- ID: 273911
Cite item
Abstract
Early phenomenon on the potentiation of radioprotective properties of aminothiols (cystamine) during repeated application in the first 7 h of drug’s after-effect by increasing their activity by 2 times was discovered (B.I. Davydov, 1971, M.V. Vasin, V.V. Antipov, 1972). A hypothesis has been proposed to explain this phenomenon. The mechanism of radioprotective properties cystamine is associated with partial neutralization of oxygen effect with the development of reductive stress in the cell, which does not end after the cessation of protective effect of radioprotector. In the body, negative feedback mechanisms are implemented at the cell, which prevent full implementation of naked consequences of reductive stress. In it, the transcription factor HIF-1 plays a key role, which enhances the production of ATP due to glycolysis and, thereby, reduces the burden on oxidative phosphorylation processes under conditions of acute hypoxia with repeated use of cystamine over the first 7 h after the cessation of its radioprotective activity. There is an increase in metabolic shifts in the body with the development of deep hypothermia in animals up to 29°C rectal temperature which can lead to depletion of these restrictive mechanisms and, thereby allowing aminothiol to fully exhibit its protective properties without excluding the increase in its toxicity. In addition, this contributes to a more complete implementation of post-radiation repair of DNA. These processes contribute to a more complete realization of the affected repair of DNA breaks by providing more time for it in conditions of longer hypothermia and mitotic blockade under the action of cystamine.
Full Text

About the authors
Mikhail V. Vasin
Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation; Research and Testing Center (Aerospace Medicine and Military Ergonomics) Central Research Institute of the Air Force of the Ministry of Defense of the Russian Federation
Author for correspondence.
Email: vv4sin80@yandex.ru
Russian Federation, Moscow; Moscow
Igor B. Ushakov
State Scientific Center – A.I. Burnazyan Federal Medical Biophysical Center of the FMBA of the Russian Federation
Email: vv4sin80@yandex.ru
Russian Federation, Moscow
Roman V. Afanasyev
Research and Testing Center (Aerospace Medicine and Military Ergonomics) Central Research Institute of the Air Force of the Ministry of Defense of the Russian Federation
Email: vv4sin80@yandex.ru
Russian Federation, Moscow
References
- Paul B.D., Snyder D.H. Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases. Front. Neurol. 2019;10:1315. https://doi.org/10.3389/fneur.2019.01315
- Jeitner T.M., Pinto J.T., Cooper A.J.L. Cystamine and cysteamine as inhibitors of transglutaminase activity in vivo. Biosci. Rep. 2018;38(5):BSR20180691. https://doi.org/10.1042/BSR20180691
- Palanski B.A., Khosla C. Cystamine and disulfiram inhibit human transglutaminase 2 via an oxidative mechanism. Biochem. 2018;57(24):3359–3363. https://doi.org/10.1021/acs.biochem.8b00204
- Fraser-Pitt D., Mercer D.K., Francis M.-L. et al. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem. Biophys. Res. Commun. (BBRC). 2023;677:168–181.
- Shokrollahi B., Fazli A., Morammazi S. et al. Cysteamine administration in lambs grazing on mountain pastures: Effects on the body weight, antioxidant capacity, thyroid hormones and growth hormone secretion. Vet. Med. Sci. 2022;8(1):328–335. https://doi.org/10.1002/vms3.644
- Bacq Z.M., Beaumariage M.L., Van Caneghem P. Importance for radioprotective effect in mammals of pharmacological and biochemical actions of cysteamine and related substances. Ann. Ist. Super. Sanita. 1965;1(9):639–645.
- Bacq Z.M., Beaumariage M.L., Goutier R., Caneghem P. Van.The state of shock induced by cystamine and cysteamine. Br. J. Pharmacol. 1968;34:202–203.
- Plomteux G., Beaumariage M.L., Heusghem C., Bacq Z.M. Increase of certain enzymes in rat plasma following injection of a radioprotective dose of cysteamine. Arch. Int. Pharmacodyn. Ther. 1966;163(1):230–231. [French]
- Bacq Z.M. Chemical protection against ionizing radiation. N.Y.: Tomas Press. Springfield, 1965.
- Ярмоненко С.П. Влияние цистамина на эндогенное дыхание. Радиобиология. 1961;1(6):903-905. [Yarmonenko S.P. The effect of cystamine on endogenous respiration. Radiobiologiya. 1961;1(6):903–905. (In Russ.)]
- Владимиров В.Г. Действие цистамина на окислительное фосфорилирование в селезенке облученных крыс. Бюлл. эксперим. биол. мед. 1962;54(11):55-58. [Vladimirov V.G. Effect of cystamine on oxidative phosphorylation in spleen of irradiated rats. Bull. Exp. Biol. Med. 1962;54(11):55–58. (In Russ.)]
- Кузнецов В.И., Танк Л.И. Изменение потребления кислорода эритроцитами под влиянием цистaмина. Радиобиология. 1962;4(1): 2-4. [Kuznesov V.I., Tank L.I. The change in oxygen consumption by red blood cells under the influence of cystamine. Radiobiologiya. 1962;4(1):2–4. (In Russ.)]
- Lelièvre P. Action of cystamine and cysteamine on the oxygen consumption and coupled oxidative phosphorylation of the liver mitochondria of rats. Int. J. Radiat. Biol. 1965;9(2):107–113.
- Skrede S. Effects of cystamine and cysteamine on the adenosine-triphosphatase activity and oxidative phosphorylation of rat liver mitochondria. Biochem. J. 1966;98(3):702–710.
- Давыдов Б.И. Элиминация цистамина в организме и пролонгирование его радиозащитного действия. Проблемы космической биологии Т. 14 (ред. П.П. Саксонов и Б.И. Давыдов). М.: Наука, 1971. С. 137–158. [Davydov B.I. Eliminaciya cistamina v organizme i prolongirovanie ego radiozashhitnogo dejstviya. Problems of space biology (Еd. P.P. Saksonov and B.I. Davydov), Moscow: Nauka, 1971. Р. 137–158. (In Russ.)]
- Васин М.В., Антипов В.В. Противолучевая эффективность цистамина при его повторном применении перед воздействием облучения. Радиобиология. 1972;12(6):924-927. [Vasin M.V., Antipov V.V. Radioprotective efficacy of cystamine during its repeated administration before irradiation. Radiobiologiya. 1972;12(6):924–927. (In Russ.)]
- Lehninger A.L., Remmert L.F. An endogenous uncoupling and swelling agent in liver mitochondria and its enzymic formation. J. Biol. Chem. 1959;234:2459–2464.
- Lehninger A.L., Schneider M. Mitochondrial swelling induced by glutathione. J. Biophys. Biochem. Cytol. 1959;5(1):109–116.
- Firket H., Lelièvre P. Effect of cystamine on the respiration, oxidative phosphorylation and ultrastructure of the mitochondria of the rat. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1966;10(4):403–415.
- Dawson T.L., Gores G.J., Nieminen A.L. et al. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am. J. Physiol. Cell. Physiol. 1993;264(4. Pt. 1):C961–967. https://doi.org/10.1152/ajpcell.1993.264.4.C961
- Garlid K.D., Paucek P. The mitochondrial potassium cycle. IUBMB Life. 2001;52(3-5):153-158. https://doi.org/10.1080/15216540152845948
- Kaasik A.I., Safiulina D., Regulation of mitochondrial matrix volume. Am. J. Physiol. Cell Physiol. 2007;292(1): C157–C63. https://doi.org/10.1152/ajpcell.00272.2006
- Fernandez-Gomez F.J., Galindo M.F., Gómez-Lázaro M. et al. Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br. J. Pharmacol. 2005;144(4):528–537. https://doi.org/10.1038/sj.bjp.0706069
- Hawkins B.J., Levin M.D., Doonan P.J. et al. Mitochondria l complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J. Biol. Chem. 2010;285(34):26494–26505. https://doi.org/10.1074/jbc.M110.143164
- Kraus-Friedmann N. Glucagon-stimulated respiration and intracellular Ca2+. FEBS Lett. 1986;201(1):133–136. https://doi.org/10.1016/0014-5793(86)80585-3
- Mohan C., Memon A.R., Bessman S.P. Differential effects of insulin, epinephrine, and glucagon on rat hepatocyte mitochondrial activity. Arch. Biochem. Biophys. 1991;287(1):18–23. https://doi.org/10.1016/0003-9861(91)90382-s
- Akopova O., Nosar V., Gavenauskas B. et al. The effect of АТР-dependent potassium uptake on mitochondrial functions under acute hypoxia. Bioenerg. Biomembr. 2016;48(1):67–75. https://doi.org/10.1007/s10863-015-9642-8
- Kehrer J.P., Lund L.G. Cellular reducing equivalents and oxidative stress. Free Radic. Biol. Med. 1994;17(1):65-75. https://doi.org/10.1016/0891-5849(94)90008-6
- Васин М.В., Ушаков И.Б., Бухтияров И.В. Cтресс-реакция и состояние биохимического шока как взаимосвязанные и неизбежные компоненты при формировании повышенной радиорезистентности организма в условиях острой гипоксии. Изв. РАН. Серия биол. 2018(1):83–92. https://doi.org/10.7868/S0002332918010113 [Vasin M.V., Ushakov I.B., Bukhtiyarov I.V. Stress reaction and biochemical shock as interrelated and unavoidable components in the formation of high radioresistance of the body in acute hypoxia. Biol. Bull. 2018;45(1):73–81. https://doi.org/10.7868/S0002332918010113
- Manford A.G., Rodrıguez-Perez F., Karen Y. et al. A cellular mechanism to detect and alleviate reductive stress. Cell. 2020;183:46–61. https://doi.org/10.1016/j.cell.2020.08.034
- Васин М.В., Саксонов П.П., Антипов В.В., Шашков В.С. Противолучевая активность аминотиолов и зависимость от дозы и срока его применения при различных условиях облучения. Радиобиология. 1970;10(3):380–385 [Vasin M.V., Saksonov P.P., Antipov V.V., Shashkov V.S. Radioprotective activity of aminothiols and dependence on the dose and duration of its administration under various radiation conditions. Radiobiologiya. 1970;10(3):380–385. (In Russ.)]
- Гребенюк А.Н., Удинцев А.В. Влияние цистамина на систему глутатиона. Радиац. биология. Радиоэкология. 1997;37(6):905–909 [Grebenyuk A.N., Udintsev A.V. Effect of cystamine on the state of glutathione system. Radiats. biol. Radioecol. 1997;37(6):905–909. (In Russ.)]
- Овакимов В.Н., Ярмоненко С.П. Адаптация к гипоксии как фактор, модифицирующий ее радиозащитный эффект. Мед. радиол. 1974;19(6):49–53. [Ovakimov V.N., Yarmonenko S.P. Adaptation to hypoxia as a factor modifying its radioprotective effect. Med. Radiol. 1974;19(6):49–53. (In Russ.)]
- Ярмоненко С.П., Эпштейн И.М. Кислородный эффект и внутриклеточное содержание кислорода (адаптационная гипотеза). Радиобиология. 1977;17(3):323–335 [Yarmonenko S.P., Epshtein I.M. Oxygen effect and the intracellular oxygen content (adaptation hypothesis). Radiobiologiya. 1977;17(3):323–335. (In Russ.)]
- Mundy R., Heiffer M., Melmann B. The pharmacology of radioprotectant medical. Biological changes in the dog following mercaptoethylamine (MEA). Arch. Int. Pharmacodyn. 1961;30(3):354–367.
- Васин М.В., Ушаков И.Б., Антипов В.В. Потенциальная роль реакции катехоламинов на острую гипоксию в модификации противолучевого действия радиопротекторов. Бюлл. эксперим. биол. мед. 2015;159(5):549–552. [Vasin M.V., Ushakov I.B., Antipov V.V. The potential role of the reaction of catecholamines to acute hypoxia in the modification of the radioprotective effect of radioprotectants. Bull. exp. biol. med. 2015;159(5):549–552. (In Russ.)]
- Engholm M ., Pinilla E., Mogensen S.et al. Involvement of transglutaminase 2 and voltage-gated potassium channels in cystamine vasodilatation in rat mesenteric small arteries. Br. J. Pharmacol. 2016;173(5):839–855.
- Васин М.В., Давыдов Б.И., Антипов В.В., Саксонов П.П. Влияние γ-облучения на элиминацию токсического эффекта цистамина. В кн.: Проблемы космической биологии, Т. 14 (Ред. П.П. Саксонов, Б.И. Давыдов), М.: Наука, 1971. С. 158–163. [Vasin M.V., Davydov B.I., Antipov V.V., Saksonov P.P. Effect of γ-exposure on elimination of toxic effect of cystamine. In: Problems of space biology. V. 14 (ed. P.P. Saksonov, B.I. Davydov). Moscow: Nauka, 1971. Р. 158–163. (In Russ.)]
- Васин М.В., Давыдов Б.И., Антипов В.В. Сравнительная элиминация радиозащитного и токсического эффекта цистамина. Радиобиология. 1971;11(4):51–521. [Vasin M.V., Davydov B.I., Antipov V.V. Comparative elimination of the radioprotective and toxic effects of cystamine. Radiobiologiya. 1971;11(4):517–521. (In Russ.)]
- Utley J.F., Seaver N., Newton G.L., Fahey R.C. Pharmacokinetics of WR-1065 in mouse tissue following treatment with WR-2721. Int. J. Radiat. Oncol. Biol. Phys. 1984;10(9):1525–528. https://doi.org/10.1016/0360-3016(84)90495-4
- Khomenko T., Deng X., Sandor Z. et al. Cysteamine alters redox state, HIF-1alpha transcriptional interactions and reduces duodenal mucosal oxygenation: novel insight into the mechanisms of duodenal ulceration. Biochem. Biophys. Res. Commun. 2004;317(1):121–127. https://doi.org/10.1016/j.bbrc.2004.03.017
- Chee N.T., Lohse I., S. P. Brothers S.P. mRNA-to-protein translation in hypoxia. Mol. Cancer. 2019;18(1):49. https://doi.org/10.1186/s12943-019-0968-4
- Ravi, Kumar A., Bhattacharyya S., Singh J. Thiol reductive stress activates the hypoxia response pathway. EMBO J. 2023;42(22):e114093
- Murray D. Aminothiols. In Radioprotectors. Chemical, Biological and Clinical perspectives. Ed. E.A. Bump, and K. Malaker. N.Y.: CRC Press, 1997. P. 53–-91.
- Jeitner T.M., Lawrence D.A. Mechanisms for the cytotoxicity of cysteamine. Toxicol. Sci. 2001;63(1):57–64. https://doi.org/10.1093/toxsci/63.1.57
- Vos O. Role of endogenous thiols in protection. Adv. Space Res. 1992;12(2-3):201–207. https://doi.org/10.1016/0273-1177(92)90109-b
- Prager A., Terry H.A., Murray D. Influence of intracellular thiol and polyamine levels on radioprotection by aminothiols. Int. J. Radiat. Biol. 1993;64(1):71–81. https://doi.org/10.1080/09553009314551121
- Allalunis-Turner M.J. Reduced bone marrow pO2 following treatment with radioprotective drug. Radiat. Res. 1990;122(3):262–267.
- Васин M.B. Сравнительное изучение влияния цистамина, цистафоса, мексамина на потребление кислорода, температуру тела и на устойчивость организма к гипоксической гипоксии. Радиобиология. 1975;15(5):795. ВИНИТИ, № 1467-75 (М., 1975) [Vasin M.V. Comparative study of the effects of cystamine, cystaphos, mexamine on oxygen consumption, body temperature and on body resistance to hypoxic hypoxia. Radiobiologyа. 1975;15(5):795. VINITI, Moscow. 1975. № 1467–75. (In Russ.)]
- Xiao W., Wang R.S., Handy D.E., Loscalzo J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid. Redox Signal. 2018;28(3):251–172. https://doi.org/10.1089/ars.2017.7216
- Hrycushko B.A., Chopra R., Sayre J.W. et al. Local hypothermia as a radioprotector of the rectal wall during prostate stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017;98(1):75–82. https://doi.org/10.1016/j.ijrobp.2017.01.017
- Xiao W., Loscalzo J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 2020;32:1330–1347. https://doi.org/10.1089/ars.2019.7803
- Michiels C. Physiological and pathological responses to hypoxia. Am. J. Pathol. 2004;164(6):1875–1882. https://doi.org/10.1016/S0002-9440(10)63747-9
- Corbucci G.G., Marchi A., Lettieri B., Luongo C. Mechanisms of cell protection by adaptation to chronic and acute hypoxia: molecular biology and clinical practice. Minerva Anestesiol. 2005;71(11):727–740.
- Brown G.C. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim. Biophys. Acta (BBA) – Bioenergetics. 2001;1504(1):46–57. https://doi.org/10.1016/S0002-9440(10)63747-9
- Morakinyo M.K., Chipinda I., Hettick J. et al. Detailed mechanistic investigation into the S-nitrosation of cysteamine. Can. J. Chem. 2012;9(9):724–738. https://doi.org/10.1139/v2012-051
- Ozaki T., Kaibori M., Matsui K. et al. Effect of thiol-containing molecule cysteamine on the induction of inducible nitric oxide synthase in hepatocytes. J. Parenter. Enteral. Nutr. 2007;31(5):366–371. https://doi.org/10.1177/0148607107031005366
- Szabó C., Ferrer-Sueta G., Zingarelli B. et al. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. J. Biol. Chem. 1997;272(14):9030–9036. https://doi.org/10.1074/jbc.272.14.903
- Eker P., Pihl A. Studies on the growth-inhibiting and radioprotective effect of cystamine, cysteamine, and aet on mammalian cells in tissue culture. Radiat. Res. 1964;21:165–179.
- Jeitner T.M., Delikatny E.J., Bartier W.A. et al. Inhibition of drug-naive and -resistant leukemia cell proliferation by low molecular weight thiols. Biochem. Pharmacol. 1998;55(6):793–802. https://doi.org/10.1016/S0006-2952(97)00575-3
- Jeitner T.M., Renton F.J. Inhibition of the proliferation of human neural neoplastic cell lines by cysteamine. Cancer Letters. 1996;103(1.):85–90. https://doi.org/10.1016/0304-3835(96)04200-0
- Jeitner T.M., Kneale C.L. Thiol-bearing compounds selectively inhibit protein kinase C-dependent oxidative events and proliferation in human T cells. Biochim. Biophys. Acta. 1994;1223(1):15–22. https://doi.org/0.1016/0167-4889(94)90068-X
- Korystov Yu.N., Vexler F.B. Mechanisms of the radioprotective effect of cysteamine in Escherichia coli. Radiat. Res. 1998;114(3):550–555.
- Сайкова В.А., Свердлов А.Г. Влияние гипертермии на радиозащитное действие цистамина и изопротеренола. Радиобиология. 1985;25(6):798-801. [Saikova V.A., Sverdlov A.G. Effect of hyperthermia on radioprotective properties of cystamine and isoproterenole. Radiobiologiya. 1985;25(6):798–801. (In Russ)]
Supplementary files
