Excess Relative Risk of Mortality from Diseases of the Circulation System after Irradiation. Report 2. Combined Data Analysis for Nuclear Workers

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the second part of the review on estimates of excess relative risks (ERR) per 1 Gy/Sv for mortality from diseases of the circulatory system (ICD-9: 390–459; ICD-10: I00–I99) after irradiation, a combined analysis and meta-analysis was carried out for nuclear industry workers of various countries. The completeness of the sample at the end of 2021 appeared to be exhaustive. The combined analysis of the data consisted in assessing the average for the sample after eliminating outliers from it; ERR per 1 Gy/Sv was 0.20 (95% CI: 0.11; 0.30). The meta-analysis was performed on the full sample, without removing outliers. Some heterogeneity was identified, so a Random effect model was used for the meta-analysis, and the ERR per 1 Gy/Sv was 0.11 (95% CI: 0.01; 0.22). The mean value of ERR per 1 Gy/Sv obtained here only for nuclear industry workers, as well as the result of the meta-analysis, did not differ much from the data of M.P. Little and co-workers (2010–2016) for heterogeneous samples from different populations. At the same time, the data for ‘Mayak’ PA on mortality from circulatory pathologies in general, and not for their individual types, indicate lower risks for external exposure (Azizova TV et al., 2018): ERR per 1 Gy/Sv was 0.04 (95% CI: –0.00; 0.09). All listed risks from the point of view of classical epidemiology, when using the common Monson scale for relative risks (RR), should be considered either ignorable (RR = = 1.0–1.2) or weak (RR = 1.2–1.5). An estimation of the absolute risk of mortality from circulatory pathologies for a hypothetical group of 100,000 nuclear workers who each accumulated a dose of 1 Gy, based on data on the baseline mortality of men from these pathologies for the United States, showed an increase of 1400 deaths over 20 years of employment. However, recalculation for the real average dose accumulated by workers in different countries (31.1 mSv; Koterov A.N. et al., 2021) revealed an insignificant increase in mortality at 0.6% of the baseline level, which risk cannot be taken into account for such multifactorial pathologies. The results obtained in the second part of the presented study: a) reinforce the conclusion made in Report 1 about the advisability of adhering to the dose threshold of 0.5 Gy for circulatory pathologies mortality established by UNSCEAR, ICRP, NCRP, BEIR, etc.; b) they indicate very low, negligible risks of mortality from circulatory pathologies attributed to the radiation factor for nuclear industry workers in recent decades and for most of those even in the previous period; c) they show that for the real activity and health protection of the majority of workers in the nuclear industry, the determination/calculation of the radiation risks of mortality from circulatory pathologies is of an exclusively theoretical nature. These conclusions are important, among other things, for expert advices on establishing the causality of occupational pathologies in nuclear industry workers.

全文:

受限制的访问

作者简介

A. Koterov

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

编辑信件的主要联系方式.
Email: govorilga@inbox.ru
俄罗斯联邦, Moscow

L. Ushenkova

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
俄罗斯联邦, Moscow

A. Wainson

N.N. Blokhin Russian Cancer Research Center

Email: govorilga@inbox.ru
俄罗斯联邦, Moscow

I. Dibirgadzhiev

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
俄罗斯联邦, Moscow

参考

  1. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А. и др. Избыточный относительный риск смертности от болезнгей системы кровообращения после облучения. Сообщение 1. Обзор обзоров и мета-анализов, декларирующих эффекты малых доз. Радиац. биология. Радиоэкология. 2023. Т. 63. № 1. С. 3–33. [Koterov A.N., Ushenkova L.N., Wainson A.A. et al. Excess relative risk of mortality from disease of the circulation system after irradiation. Report 1. Overview of reviews and meta-analysis declared effects of low doses. Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2023;63(1)3–33. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S0869803123010095
  2. Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death: Based on the Recommendations of the Ninth Revision Conference, 1975, and Adopted by the Twenty-ninth World Health Assembly, 1975 revision. V. I. World Health Organization: Geneva, 1977. 353 p. [Translated in Russian: Руководство по международной статистической классификации болезней, травм и причин смерти. Классификация основана на рекомендациях Конференции по Девятому пересмотру (1975 г.) и принята Двадцать девятой Всемирной ассамблеей здравоохранения. Т. 1. ВОЗ, Женева. М.: Медицина, 1980. 758 с. (In Russ.)]
  3. Classification of Diseases, Functioning, and Disability. CDC. Center for Disease Control and Prevention. NCHS. National Center for Health Statistics. World Health Organization (WHO). 2021. https://www.cdc.gov/nchs/icd/index.htm (address data 2022/01/12).
  4. ICRP Publication 118. ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP. Ed. by C.H. Clement. Amsterdam– New York: Elsevier, 2012. 325 p.
  5. Hendry J.H. Threshold doses and circulatory disease risks. Ann. ICRP. 2015;44(1, Suppl):69–75. https://doi.org/10.1177/0146645314560688
  6. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex B Epidemiological evaluation of cardiovascular disease and other non-cancer diseases following radiation exposure. New York: United Nations, 2008. P. 325–383.
  7. UNSCEAR 2010. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation 2010. Fifty-seventh session, includes Scientific Report: summary of low-dose radiation effects on health. New York: United Nations, 2011. 106 p.
  8. UNSCEAR 2019. Report to the General Assembly, with Scientific Annexes. Annex A. Evaluation of selected health effects and inference of risk due to radiation exposure. New York, 2020. P. 21–192.
  9. NCRP Report No 171. Uncertainties in the estimation of radiation risks and probability of disease causation. Bethesda, MD: National Council on Radiation Protection and Measurements, 2012. 418 p.
  10. NCRP Commentary No 27. Implications of recent epidemiologic studies for the linear-nonthreshold model and radiation protection. Bethesda, MD: National Council on Radiation Protection and Measurements, 2018.
  11. EPA Radiogenic cancer risk models and projections for the U.S. population (Blue Book). EPA-HQ-OAR-2011-0436; FRL-9313-4. Federal Register. 2011. V. 76. № 104. P. 31329–31330. Washington, D.C.: Environmental Protection Agency, 2011.
  12. McGale P., Darby S.C. Low doses of ionizing radiation and circulatory diseases: a systematic review of the published epidemiological evidence. Radiat. Res. 2005;163(3):247–257. https://doi.org/10.1667/rr3314
  13. McGale P., Darby S.C. Commentary: a dose-response relationship for radiation-induced heart disease-current issues and future prospects. Int. J. Epidemiol. 2008;37(3):518–523. https://doi.org/10.1093/ije/dyn067
  14. McMillan T.J., Bennett M.R., Bridges B.A. et al. Circulatory disease risk, subgroup on circulatory disease risk of the Advisory Group on Ionising Radiation. AGIR-2010. Circulatory disease risk. Report of the independent Advisory Group on Ionising Radiation. Chilton, Doc HPA, RCE-16. 2010. 116 p.
  15. Little M.P., Tawn E.J., Tzoulaki I. et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat. Res. 2008;169(1):99–109. https://doi.org/10.1667/RR1070.1
  16. Little M.P., Tawn E.J., Tzoulaki I. et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat. Environ. Biophys. 2010;49(2):139–153. https://doi.org/10.1007/s00411-009-0250-z
  17. Little M.P., Azizova T.V., Bazyka D. et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ. Health. Perspect. 2012;120(11):1503–1511. https://doi.org/10.1289/ehp.1204982
  18. Little M.P. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat. Environ. Biophys. 2013;52(4):435–449. https://doi.org/10.1007/s00411-013-0484-7
  19. Little M.P., Lipshultz S.E. Low dose radiation and circulatory diseases: a brief narrative review. Cardio-Oncology. 2015;1:Article 4. 10 p. https://doi.org/10.1186/s40959-015-0007-6
  20. Little M.P. Radiation and circulatory disease. Mutat. Res. 2016;770(Pt B):299–318. https://doi.org/10.1016/j.mrrev.2016.07.008
  21. Little M.P., Azizova T.V., Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int. J. Radiat. Biol. 2021;97(6):782-803. https://doi.org/10.1080/09553002.2021.1876955
  22. Kreuzer M., Auvinen A., Cardis E. et al. Low-dose ionising radiation and cardiovascular diseases — Strategies for molecular epidemiological studies in Europe. Mutat. Res. Rev. Mutat. Res. 2015;764:90–100. https://doi.org/10.1016/j.mrrev.2015.03.002
  23. Gao L., Ding C.-Y. Low dose radiation exposure and cardiovascular diseases: a review. Int. J. Cardiovasc. Pract. 2017;2(4):76–79. https://doi.org/10.21859/ijcp-030103
  24. Baselet B., Ramadan R.A., Benotmane A.M. et al. Selected endothelial responses after ionizing radiation exposure. In: Endothelial Dysfunction — Old Concepts and New Challenges. Ed. by H. Lenasi. IntechOpen, 2018:365–390. https://doi.org/10.5772/intechopen.72386
  25. Wakeford R. Does low-level exposure to ionizing radiation increase the risk of cardiovascular disease? Hypertension. 2019;73(6):1170–1171. https://doi.org/10.1161/HYPERTENSIONAHA. 119.11892
  26. Bernstein J., Dauer L., Dauer Z. et al. Cardiovascular risk from low dose radiation exposure. Review and scientific appraisal of the literature. 3002018408. Technical Report. Palo Alto (CA): Electric Power Research Institute (EPRI). Final Report, 2020. 144 p. https://www.epri.com/research/products/000000003002018408 (address data 2022/01/21).
  27. Tapio S., Little M.P., Kaiser J.C. et al. Ionizing radiation-induced circulatory and metabolic diseases. Environ. Int. 2021;146:Article 106235. 16 p. https://doi.org/10.1016/j.envint.2020.106235
  28. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd, 2009. 421 p.
  29. Shimizu Y., Pierce D.A., Preston D.L., Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, Part II. Noncancer mortality: 1950–1990. Radiat. Res. 1999;152(4):374–389. https://doi.org/10.2307/3580222
  30. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Краткий обзор мировых исследований лучевых и нелучевых эффектов у работников ядерной индустрии. Медико-биологические проблемы жизнедеятельности (Гомель). 2020. № 1. С. 17–31. [Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Brief review of world researches of radiation and non-radiation effects in nuclear industry workers. Medical and Biological Problems of Life Activity (Gomel). 2020(1):17–31. (In Russ. Engl. abstr.)]
  31. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Сравнение риска смертности от солидных раков после радиационных инцидентов и профессионального облучения. Медицина катастроф. 2021. № 3. С. 34–41. [Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Comparison of the risk of mortality from solid cancers after radiation incidents and occupational exposures. Disaster Medicine (“Meditsina katastrof”, Moscow) 2021(3):34–41 (In Russ. Engl. abstr.)] https://doi.org/10.33266/2070-1004-2021-3-34-41
  32. Ashmore J.P., Krewski D., Zielinski J.M. et al. First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am. J. Epidemiol. 1998;148(6):564–574. https://doi.org/10.1093/oxfordjournals.aje.a009682
  33. National Research Council, Division on Earth and Life Studies, Board on Radiation Effects Research, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII. Phase 2. National Academies Press, 2006. 422 p.
  34. Laurent O., Metz-Flamant C., Rogel A. et al. Relationship between occupational exposure to ionizing radiation and mortality at the French electricity company, period 1961–2003. Int. Arch. Occup. Environ. Health. 2010;83(8):935–944. https://doi.org/10.1007/s00420-010-0509-3
  35. Boice J.D. Jr., Cohen S.S., Mumma M.T. et al. Mortality among workers at the Los Alamos National Laboratory, 1943–2017. Int. J. Radiat. Biol. 2021;21:1–28. Online ahead of print. https://doi.org/10.1080/09553002.2021.1917784
  36. Zhivin S., Guseva Canu I., Davesne E. et al. Circulatory disease in French nuclear fuel cycle workers chronically exposed to uranium: a nested case-control study. Occup. Environ. Med. 2018;75(4):270–76. https://doi.org/10.1136/oemed-2017-104575
  37. Silver S.R., Bertke S.J., Hein M.J. et al. Mortality and ionising radiation exposures among workers employed at the Fernald Feed Materials Production Center (1951–1985). Occup. Environ. Med. 2013;70(7):453–463. https://doi.org/10.1136/oemed-2012-100768
  38. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–95. J. Radiol. Prot. 2000a;20(4):381–401. https://doi.org/10.1088/0952-4746/20/4/303
  39. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946–95. J. Radiol. Prot. 2000b;20(2):111–137. https://doi.org/10.1088/0952-4746/20/2/301
  40. Handbook of Epidemiology. Ed. by W. Ahrens, I. Pigeot. 2nd Edition. New York; Heidelberg; Dordrecht; London: Springer, 2014. 2498 p.
  41. Howe G.R., Zablotska L.B., Fix J.J. et al. Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat. Res. 2004;162(5):517–526. https://doi.org/10.1667/rr3258
  42. Vrijheid M., Cardis E., Ashmore P. et al. Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-country study of nuclear industry workers. Int. J. Epidemiol. 2007;36(5):1126–1135. https://doi.org/10.1093/ije/dym138
  43. McGeoghegan D., Binks K., Gillies M. et al. The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int. J. Epidemiol. 2008;37(3):506–518. https://doi.org/10.1093/ije/dyn018
  44. Muirhead C.R., O’Hagan J.A., Haylock R.G.E. et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br. J. Cancer. 2009a;100(1):206–212. https://doi.org/10.1038/sj.bjc.6604825
  45. Muirhead C.R., O’Hagan J.A., Haylock R.G.E. et al. Third analysis of the National Registry for Radiation Workers: occupational exposure to ionizing radiation in relation to mortality and cancer incidence. Health Protection Agency. Centre for Radiation, Chemical and Environmental Hazards. Radiation Protection Division. HPA-RPD-062. Chilton, Didcot, Oxfordshire OX11 0RQ. 2009b. 150 p. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/340090/HPA-RPD-062_for_website.pdf (accessed 2024/05/29).
  46. Metz-Flamant C., Laurent O., Samson E. et al. Mortality associated with chronic external radiation exposure in the French combined cohort of nuclear workers. Occup. Environ. Med. 2013;70(9):630–638 https://doi.org/10.1136/oemed-2012-101149
  47. Zablotska L.B., Lane R.S., Frost S.E. Mortality (1950–1999) and cancer incidence (1969–1999) of workers in the Port Hope cohort study exposed to a unique combination of radium, uranium and γ-ray doses. BMJ Open. 2013;3(2):Article e002159. 10 p. https://doi.org/10.1136/bmjopen-2012-002159
  48. Zablotska L.B. Mortality risks in the pooled analyses of the Canadian and German uranium processing worker. Canadian Nuclear Safety Commission contract 87055-13-0577. Final Report. R587.1. July 31, 2015. 43 p. https://www.nuclearsafety.gc.ca/eng/pdfs/research-project-R587-1.pdf (accessed 2022/01/12)
  49. Leuraud K., Fournier L., Samson E. et al. Mortality in the French cohort of nuclear workers. Radioprotection. 2017;52(3):199–210. https://doi.org/10.1051/radiopro/2017015
  50. Gillies M., Richardson D.B., Cardis E. et al. Mortality from circulatory diseases and other non-cancer outcomes among nuclear workers in France, the United Kingdom and the United States (INWORKS). Radiat. Res. 2017;188(3):276–290. https://doi.org/10.1667/RR14608.1
  51. Azizova T.V., Batistatou E., Grigorieva E.S. et al. An assessment of radiation-associated risks of mortality from circulatory disease in the cohorts of Mayak and Sellafield nuclear workers. Radiat. Res. 2018;189(4):371–388. https://doi.org/10.1667/RR14468.1
  52. Zablotska L.B., Fenske N., Schnelzer M. et al. Analysis of mortality in a pooled cohort of Canadian and German uranium processing workers with no mining experience. Int. Arch. Occup. Environ. Health. 2018;91(1):91–103. https://doi.org/10.1007/s00420-017-1260-9
  53. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования. Мед. радиология и радиац. безопасность. 2013. Т. 58. № 2. С. 5–21. [Koterov A.N. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing. Med. Radiologiya. Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”, Moscow). 2013;58(2): 5–21. (In Russ. Engl. abstr.)]
  54. Blettner M., Sauerbrei W. Schlehofer B. et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int. J. Epidemiol. 1999;28(1):1–9. https://doi.org/10.1093/ije/28.1.1
  55. Bravata D.M., Olkin I. Simple pooling versus combining in meta-analysis. Eval. Health Prof. 2001;24(2):218–230. https://doi.org/10.1177/01632780122034885
  56. Кокунин В.А. Статистическая обработка данных при малом числе опытов. Укр. биохим. журн. 1975. Т. 47. № 6. С. 776–790. [Kokunin V.A. Statistical processing of data from a small number of experiments. Ukr. Biokhim. Zh. (“Ukraininan Journal of Biochemistry”, Kiev). 1975;47(6):776–791. (In Russ.)]
  57. Mostarac P., Malaric R., Hegedusi H. Comparison of outliers elimination algorithms. Proc. 7th Int. Conf., Smolenice, Slovakia. Measurement. 2009. P. 49–52. Also table ‘Chauvenet’s criterion for rejecting a reading’: https://chetaero.files.wordpress.com/2016/11/chauvenet.pdf (accessed 2024/05/29).
  58. Matanoski G.M. Health Effects of Low-Level Radiation in Shipyard Workers. Final Report Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Epidemiology. United States: N. p., DOE Report no. DOE/EV/10095.T2, DOE Contract No. DE-ACO2-79EV10095, National Technical Information Service, Springfield, VA, 1991. 1991. 437 p.https://doi.org/10.2172/10103020. https://www.osti.gov/servlets/purl/10103020 (address data 2022/01/12)
  59. Johnson P., Atkinson W.D., Nicholls J.L. Updated analysis of mortality in workers at UK atomic weapons establishments. In: ‘Proceedings of the SRP Sixth International Symposium: Achievements & Challenges: Advancing Radiation Protection into the 21st Century. Ed. by M. Thorne. London: Society for Radiological Protection, 1999.
  60. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of employees at the Chapelcross plant of British Nuclear Fuels plc, 1955–95. J. Radiol. Prot. 2001;21(3):221–50. https://doi.org/10.1088/0952-4746/21/3/302
  61. Omar R.Z., Barber J.A., Smith P.G. Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels. Br. J. Cancer. 1999;79(7–8):1288–1301. https://doi.org/10.1038/sj.bjc.6690207
  62. Cardis E., Gilbert E.S., Carpenter L. et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat. Res. 1995;142(2):117–132. https://doi.org/10.2307/3579020
  63. Azizova T.V., Grigorieva E.S., Hunter N. et al. Risk of mortality from circulatory diseases in Mayak workers cohort following occupational radiation exposure. J. Radiol. Prot. 2015;35(3):517–538. https://doi.org/10.1088/0952-4746/35/3/517
  64. Азизова Т.В., Григорьева Е.С., Хантер Н. и др. Риск смерти от болезней системы кровообращения в когорте работников, подвергшихся хроническому облучению. Тер. архив. 2017. Т 89. № 1. С. 18–27. [Azizova T.V., Grigoryeva E.S., Hunter N. et al. Mortality from circulatory diseases in a cohort of patients exposed to chronic radiation. Ter. Arkh. 2017;89(1):18–27. (In Russ. Engl. abst.)] https://doi.org/10.17116/terarkh201789118-27
  65. Azizova T.V., Bannikova M.V., Grigoryeva E.S. et al. Mortality from various diseases of the circulatory system in the Russian Mayak nuclear worker cohort: 1948–2018. J. Radiol. Prot. 2022 Mar 9;42(2):Article 021511. 44 p. https://doi.org/10.1088/1361-6498/ac4ae3
  66. Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003;327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557
  67. Monson R.R. Occupational Epidemiology. Florida: Boca Raton: CRC Press, 1980. 219 p.; 2nd Ed. Florida: Boca Raton, CRC Press Inc., 1990. 312 p.
  68. Taubes G. Epidemiology faces its limits. Science. 1995; 269(5221):164–169. https://doi.org/10.1126/science.7618077
  69. Котеров А.Н., Ушенкова Л.Н., Зубенкова Э.С. и др. Сила связи. Сообщение 1. Градации относительного риска. Мед. радиология и радиац. безопасность. 2019. Т. 64. № 4. С. 5–17. [Koterov A.N., Ushenkova L.N., Zubenkova E.S. et al. Strength of association. Report 1. Graduation of relative risk. Med. Radiologiya. Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”, Moscow). 2019;64(4):5–17. (In Russ. Engl. abstract.)] https://doi.org/10.12737/article_5d1adb25725023. 14868717
  70. Smoking and Heart Disease and Stroke. CDC. Centers for Disease Control and Prevention. NCHS. National Center for Health Statistics, Classification of Diseases, Functioning, and Disability. World Health Organization (WHO). 2021. https://www.cdc.gov/tobacco/campaign/tips/diseases/heart-disease-stroke.html (accessed 2024/05/29)
  71. Szklo M., Nieto F.J. Epidemiology. Beyond the Basics. 4th Ed. Burlington: Jones & Bartlett Learning, 2019. 577 p.
  72. Boffetta P. Causation in the presence of weak associations. Crit. Rev. Food. Sci. Nutr. 2010;50(Suppl 1):13–16. https://doi.org/10.1080/10408398.2010.526842
  73. Ford E.S., Capewell S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu. Rev. Public. Health. 2011;32(1):5–22. https://doi.org/10.1146/annurev-publhealth-031210-101211
  74. Boice J.D. Jr., Ellis E.D., Golden A.P. et al. The past informs the future: an overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort. Health Phys. 2018;VB 114(4):381–385. https://doi.org/10.1097/HP.0000000000000825
  75. Семенова Ю.В., Карпов А.Б., Тахауов Р.М. и др. Маркеры эндотелиальной дисфункции у пациентов с артериальной гипертонией, подвергавшихся профессиональному облучению низкой интенсивности. Кардиология. 2020. Т. 60. № 10. С. 73–79. [Semenova Y.V., Karpov A.B., Takhauov R.M. et al. Markers of endothelial dysfunction in patients with arterial hypertension exposed to occupational irradiation of low intensity. Kardiologiya (Cardiology, Moscow). 2020;60(10):73–79. (In Russ. Engl. abst.)] https://doi.org/10.18087/cardio.2020.10.n1236
  76. Котеров А.Н., Туков А.Р., Ушенкова Л.Н. и др. Средняя накопленная доза облучения для работников мировой ядерной индустрии: малые дозы, малые эффекты. Сравнение с дозами для медицинских радиологов. Радиац. биология. Радиоэкология. 2022;62(3):227–239. [Koterov A.N., Tukov A.R., Ushenkova L.N. et al. Average accumulated radiation doses for world nuclear workers: low doses, low effects. Comparison with doses for medical radiologists. Radiatsionnaya Biologiya. Radioekologiya. (Radiation biology. Radioecology, Moscow). 2022;62(3):227–239. (In Russ., Engl. abstr.) https://doi.org/10.31857/S0869803122030043
  77. Koterov A.N., Tukov A.R., Ushenkova L.N. et al. Average accumulated radiation doses for global nuclear workers: low doses, low effects, and comparison with doses for medical radiologists. Biol. Bull. (Moscow). 2022;49(12):2475–2485. https://doi.org/10.1134/S106235902212007X

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Forest-plot showing data for foreign nuclear industry workers on ERR per 1 Gy/Sv (with 90% or 95% CI) for disease of circulatory system included in the combined analysis. The results of the analysis are shown below. The sources that were excluded from the selection according to the Chauvenet’s criterion are displayed in the upper part.

下载 (236KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».