Evaluating in vitro and in vivo the photoprotective effectiveness of combinations of lichen extracts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a series of experiments, the photoprotective properties of ethanol and ethanol-castor compositions based on perspective combinations of lichen extracts (1:1) were studied in terms of a set of parameters: 1) SPF, λcrit and UV-A/UV-B — in vitro; 2) morphological and functional characteristics of the skin, pro- and antioxidant processes in mice’ blood (line Af) after topical application of the compositions and exposure to UV-A/B — in vivo. In general, photometric studies showed a very high level of photoprotection in all created lichen compositions, which are close to each other quantitatively and approach the category of “sunscreens”. Compositions based on the combination of extracts “ethylacetate Cladonia arbuscula + methanol Ramalina pollinaria” favorably stand out in terms of the combination “SPF — λcrit — UV-A/UV-B”. According to biochemical and morphometric parameters, ethanol and a 30% solution of castor oil in ethanol do not have a noticeable modifying effect on the action of UV on the skin and blood serum and can be used for topical applications of lichen extracts. Among the tested ethanol compositions of extracts in the entire series of experiments at concentrations of 0.2 g/l and 15-20 g/l, according to the sum of the burn severity values at 20 min of UV irradiation, the combinations of extracts “ethylacetate C. arbuscula + methanol R. pollinaria” and “benzene Evernia prunastri + ethanol C. arbuscula” have shown the best photoprotective effect (5-6 points on a 10-point scale). These combinations of extracts worked in a similar way in ethanol-castor compositions, where they showed a less stable photoprotective effect. The introduction of castor oil into ethanol increased the severity of the burn by 6.5-10.5% for all combinations of extracts. The summary of UV effects based on biochemical parameters with a clear direction (GPx, TBARS, TAOC, GSH) shows the photosensitizing nature of all lichen compositions at a concentration of 0.2 g/l. This was observed to the greatest extent for the combination of methanol extracts of Hypogymnia physodes and C. arbuscula. The lowest photosensitivity was noted for the combination of extracts “ethylacetate C. arbuscula + methanol R. pollinaria”, which in various compositions and by the totality of photometric, biochemical and morphometric parameters demonstrated the most expressed photoprotective properties.

Full Text

Restricted Access

About the authors

Sergey V. Goncharov

Institute of Radiobiology of National Academy of Sciences of Belarus

Author for correspondence.
Email: combinexpo@gmail.com
ORCID iD: 0009-0009-4231-6461
Belarus, Gomel

Volha M. Khramchаnkova

Francisk Skorina Gomel State University

Email: hramchenkova@gsu.by
ORCID iD: 0000-0002-6677-096X
Belarus, Gomel

Alexander E. Kozlov

Gomel State Medical University

Email: cozlov.alexander@yandex.ru
ORCID iD: 0000-0002-3220-250X
Belarus, Gomel

References

  1. Ball W.T. et al. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmos. Chem. Phys. 2018;18(2):1379–1394. https://doi.org/10.5194/acp-18-1379-2018
  2. Заридзе Д.Г., Максимович Д.М. Профилактика злокачественных новообразований. Успехи молек. онкол. 2017;4(2):8–25. [Zaridze D.G. Maksimovich D.M., Profilaktika zlokachestvennykh novoobrazovaniy = Prevention of malignant neoplasms. Uspekhi molekulyarnoy onkologii. 2017;4(2):8–25. (In Russ.)]. https://doi.org/10.17650/2313-805X-2017-4-2-8-25
  3. Снарская Е.С. Фотоканцерогенез и профилактика рака кожи. Рос. журн. кож. и венер. болезней. 2010;5:1010–13. [Snarskaya Ye.S. Fotokantserogenez i profilaktika raka kozhi = Photocarcinogenesis and prevention of skin cancer. Rossiyskiy zhurnal kozhnykh i venericheskikh bolezney. 2010;5:10–13. (In Russ.)].
  4. Gianeti M.D., Maia Campos P. M., Efficacy Evaluation of a Multifunctional Cosmetic Formulation: The Benefits of a Combination of Active Antioxidant Substances. Molecules. 2014;19:18268–18282. https://doi.org/10.3390/molecules191118268
  5. Gilbert E., Pirot F., Bertholle V. et al. Commonly used UV filter toxicity on biological functions: review of last decade studies. Int. J. Cosm. Sci. 2013;35(3):208–219. https://doi.org/10.1111/ics.12030
  6. Гвинджилия С.А. и др. Разработка состава солнцезащитного средства с использованием сырья, произрастающего на территории Грузии. Междунар. журн. прикл. и фунд. исслед. 2018;11: 248–252. [Gvindzhiliya S.A. i dr. Razrabotka sostava solntsezashchitnogo sredstva s ispol’zovaniyem syr’ya, proizrastayushchego na territorii Gruzii = Development of the composition of a sunscreen using raw materials growing in Georgia. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2018;11:248–252. (In Russ.)].
  7. Vayalil P.K., Elmets C.A., Katiyar S.K. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis. 2003;4:927-936. https://doi.org/10.1093/carcin/bgg025
  8. Naranyanan D.L., Saladi R.N., Fox J.L. Ultraviolet radiation and skin cancer. Int. J. Derm.2010;49:978-986. http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x
  9. Bino A., Baldisserotto A., Scalambra E., Dissette V. et al. Design, synthesis and biological evaluation of novel hydroxy-phenyl-1H-benzimidazoles as radical scavengers and UV-protective agents. J. Enzyme Inhibit. Med. Chem.2017;32(1):527-537. https://doi.org/10.1080/14756366.2016.1265523
  10. Cvetkovska A.D., Manfredini S., Ziosi P., Molesini S., Dissette V. et al. Factors affecting SPF in vitro measurement and correlation with in vivo results. Int. J. Cosmet. Sci. 2017;39:310-319. https://doi.org/10.1111/ics.12377
  11. Perea S.E. Solar filters: A strategy of photoprotection. Appl. Photochem. 2016;92:459-478. http://dx.doi.org/10.5772/intechopen.72712
  12. Храмченкова О.М. Фотозащитные свойства экстрактов из пяти видов лишайников. Изв. Гомель. госуд. университета им. Ф. Скорины. 2018;6(111):81-86. [Khramchenkova O.M., Fotozashchitnaya aktivnost’ ekstraktov pyati vidov lishaynikov = Photoprotective properties of extracts from five types of lichens. Izvestiya Gomel’skogo gosudarstvennogo universiteta imeni F. Skoriny. 2018;6(111):81-86. (In Russ.)]
  13. Adachi T., Satou Y., Satou H., Shibata H., Miwa S. et al. Assessment of 8-methosypsoralen, lomefloxacin, sparfloxacin and pirfenidone phototoxicity in Long-Evans rats. Int. J. Toxicol. 2015;34(1):16-23. https://doi.org/10.1177/1091581814559397
  14. Huang D., Ou B., Hampsch-Woodill M., Prior R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric.Food Chem. 2002;50(16):4437–4444. http://dx.doi.org/10.1021/jf0201529
  15. Davalos A., Gomez-Cordoves C., Bartolome B. Extending applicability of the oxygen radical absorbance capacity (ORAC−fluorescein) assay. J. Agric. Food Chem. 2004. 52(1):48–54. https://doi.org/10.1021/jf0305231
  16. Справочник по клинико-биохимической лабораторной диагностике: В 2 т. Т.1. Минск: Беларусь, 2002. 495 с. [Spravochnik po kliniko-biokhimicheskoy laboratornoy diagnostike = Handbook of clinical and biochemical laboratory diagnostics: V 2 t. T.1. Minsk: Belarus’, 2002. 495 р. (In Russ.)]
  17. Sedlak K.J., Lindsay R.H. Estimation of total protein bound and non-protein sulfhydryl group in tissues with Ellman’s reagent. Anal. Biochem. 1968; 25(1):192–205.
  18. Современные проблемы биохимии. Методы исследований / Е.В. Барковский [и др.]; под ред. А.А. Чиркина. Минск: Вышэйшая школа, 2013. С. 187-190. [Sovremennyye problemy biokhimii. Metody issledovaniy = Modern problems of biochemistry. Research methods / Ye.V. Barkovskiy i dr.; pod red. А.А. Chirkina. Minsk: Vysheyshaya shkola, 2013. Р. 187–190. (In Russ.)].
  19. Robaszkiewicz A., Bartosz G., Soszynski M. N-chloroamino acids cause oxidative protein modifications in the erythrocyte membrane. Mech. Ageing Dev. 2008;129:572–579. https://doi.org/10.1016/j.mad.2008.05.007
  20. Sadowska-Bartosz I., Adamczyk-Sowa M., Galiniak S. et al. Oxidative modification of serum proteins in multiple sclerosis. Neurochem. Int. 2013;63(5):507–516. https://doi.org/10.1016/j.neuint.2013.08.009
  21. Taylor E.L., Armstrong K.R., Perrett D. et al. Optimisation of an Advanced Oxidation Protein Products Assay: Its Application to Studies of Oxidative Stress in Diabetes Mellitus. Oxid. Med. Cell. Longev. 2015, Article ID 496271. 10p. https://doi.org/10.1155/2015/496271
  22. Schimke I., Kahl P.E., Romaniuk P., Papies B. Concentration of thiobarbituric acid reactive substances (TBARS) in serum following myocardial infarct. Klin. Wochenschrift. 1986;23(64):1237–1239.
  23. Schafler M., Shepard B.M. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137(2):269–276.
  24. Rojas J.L., Díaz-Santos M., Valencia-Islas N.A. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharm. Biosci. J. 2015;3(4):18-26. https://doi.org/10.20510/ukjpb/3/i4/89454
  25. Гончаров С.В., Козлов А.Е., Матвеенков М.В., Чешик И.А. Оценка эффективности защиты от ультрафиолетового излучения экстрактами лишайника Hypogymnia physodes в биологических системах in vivo. Докл. НАН Беларуси. 2019;63(6):747–754. [Goncharov S.V., Kozlov A.Ye., Matveyenkov M.V., Cheshik I.A. Otsenka effektivnosti zashchity ot ul’trafioletovogo izlucheniya ekstraktami lishaynika Hypogymnia physodes v biologicheskikh sistemakh in vivo = Evaluation of the efficacy of ultraviolet radiation protection by lichen extracts Hypogymnia physodes in biological systems in vivo. Doklady NAN Belarusi. 2019;63(6):747–754. (In Russ.)]. https://doi.org/10.29235/1561-8323-2019-63-6-747-754
  26. Гончаров С.В. Козлов А.Е., Матвеенков М.В., Храмченкова О.М. Оценка профилактического действия экстрактов лишайников при воздействии УФ на модели in vivo. В кн.: Биохимия и молекулярная биология”. 2019. Вып. 3. Минск: ИВЦ Минфина, 2019. С. 150–155. [Goncharov S.V. Kozlov A.Ye., Matveyenkov M.V., Khramchenkova O.M., Otsenka profilakticheskogo deystviya ekstraktov lishaynikov pri vozdeystvii UF na modeli in vivo = Evaluation of the preventive effect of lichen extracts under UV exposure оn in vivo model. In: Biokhimiya i molekulyarnaya biologiya. 2019. Vyp. 3. Minsk: IVTS Minfina, 2019. Р. 150–155. (In Russ.)].
  27. Гончаров С.В., Сушко С.Н., Ноздрев Д.А. и др.Оценка фотопротекторной способности экстрактов лишайников по морфометрическим показателям кожи. В кн.: Радиобиология: актуальные проблемы. Мат. междунар. науч. конф., Гомель, 27–28 сентября 2018. Гомель: БТЭУ ПК, 2018. С. 41-44. [Goncharov S.V., Sushko S.N., Nozdrev D.A. et al. Otsenka fotoprotektornoy sposobnosti ekstraktov lishaynikov po morfometricheskim pokazatelyam kozhi = Assessment of the photoprotective ability of lichen extracts based on skin morphometric parameters. In: Radiobiologiya: aktual’nyye problemy. Mat. mezhd. nauch. konf., Gomel’, 27-28 sentyabrya 2018. Gomel’: BTEU PK, 2018. Р. 41-44. (In Russ.)]
  28. Гончаров С.В., Матвеенков М.В., Храмченкова О.М. Фотозащитная способность лишайниковых экстрактов при топических аппликациях на различных носителях. В кн.: Современные проблемы радиационной медицины: от науки к практике. Мат. междунар. науч.-практ. конф., Гомель, 19 июня 2020. Гомель: РНПЦ РМиЭЧ, 2020. С. 29-31. [Goncharov S.V., Matveyenkov M.V., Khramchenkova O.M. Fotozashchitnaya sposobnost’ lishaynikovykh ekstraktov pri topicheskikh applikatsiyakh na razlichnykh nositelyakh = Photoprotective ability of lichen extracts for topical applications on various media. In: Sovremennyye problemy radiatsionnoy meditsiny: ot nauki k praktike. Mat. mezhd. nauch.-prakt. konf., Gomel’, 19 iyunya 2020. Gomel’: RNPTS RMiECH, 2020. Р. 29-31. (In Russ.)]
  29. Гончаров С.В., Кадукова Е.М. Оценка модификации кожных эффектов УФ-облучения этанольно-касторовыми композициями у мышей. В кн.: Современные проблемы радиационной медицины: От науки к практике. Мат. межд. науч.-практ. конф., Гомель, 29 апреля 2021. Гомель: ГУ РНПЦ РМиЭЧ, 2021. С. 28-30. [Goncharov S.V., Kadukova Ye.M., Otsenka modifikatsii kozhnykh effektov UF-oblucheniya etanol’no-kastorovymi kompozitsiyami u myshey = Assessment of modifying the skin effects of UV irradiation with ethanol-castor compositions in mice. In: Sovremennyye problemy radiatsionnoy meditsiny: Оt nauki k praktike. Mat. mezhd. nauch.-prakt. konf., Gomel’, 29 aprelya 2021. Gomel’: GU RNPTS RMiECH, 2021. Р. 28-30. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphometric parameters of the skin of Af mice on the 4th day after UV irradiation with prophylactic application of ethanol lichen compositions at concentrations of 0.2 and 15–20 g/l. * Statistically significant differences with “Ethanol + UV” (at p < 0.05).

Download (178KB)
3. Fig. 2. Morphometric parameters of the skin of Af mice on the 4th day after UV irradiation with the prophylactic application of ethanol-castor lichen compositions at concentrations of 0.2 and 15–20 g/l. * Statistically significant differences with “30% castor oil in ethanol + UV” (at p < 0.05).

Download (182KB)
4. Fig. 3. Antioxidant parameters and markers of oxidative modification of proteins in blood serum on the 4th day after application of ethanol and UV irradiation (% of control). * Statistically significant differences with control (at p < 0.05).

Download (121KB)
5. Fig. 4. Antioxidant parameters and markers of oxidative modification of proteins in blood serum on the 4th day after application of ethanol compositions from lichen extracts (0.2 g/l) and UV irradiation. * Statistically significant differences with “Ethanol + UV” (at p < 0.05).

Download (253KB)
6. Fig. 5. Antioxidant parameters and markers of oxidative modification of proteins in blood serum on the 4th day after applying solutions of castor oil in ethanol and UV irradiation (% of control). * Statistically significant differences with control (at p < 0.05), ** statistically significant differences with “UV” (at p < 0.05).

Download (283KB)
7. Fig. 6. Antioxidant parameters and markers of oxidative modification of proteins in blood serum on the 4th day after application of ethanol-castor compositions from lichen extracts (0.2 g/l) and UV irradiation.  * Statistically significant differences with “Ethanol + UV” (at p < 0.05).

Download (271KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».