Evaluation of the therapeutic effectiveness of a composite agent in the treatment of radiation-thermal damage
- Autores: Gaynutdinov T.R.1,2,3, Vagin K.N.1,2, Nizamov R.N.1
-
Afiliações:
- Federal Center for Toxicological, Radiation and Biological Safety
- Kazan Federal University
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation
- Edição: Volume 64, Nº 4 (2024)
- Páginas: 370-382
- Seção: Modification of Radiation Effects
- URL: https://journals.rcsi.science/0869-8031/article/view/273657
- DOI: https://doi.org/10.31857/S0869803124040042
- EDN: https://elibrary.ru/LOGZZJ
- ID: 273657
Citar
Resumo
The paper presents the results of evaluating the therapeutic effectiveness of a composition based on anti-radiation serum and metabolic products of bifidobacteria on laboratory animals subjected to experimental combined radiation and thermal effects. 124 mongrel white rats of both sexes with a live weight of 180–220 g were used as a biological model in the work. The simulation of radiation damage to the body was carried out by a single external irradiation of animals on a Puma gamma installation with a 137Cs radiation source with an exposure dose of 8.5×10–2 A/kg in an absorbed dose of 7.5 Gy. Thermal injury was inflicted by applying a brass plate heated to 200°C with an area of 4.9 cm2 with a retention exposure of 8 seconds to the trimmed area of the upper third of the thigh, inducing a grade III burn. The effectiveness of the therapeutic drug was evaluated according to the following criteria: changes in the titer of the compliment, the concentration of radiotoxin and thermotoxin, changes in the methodological parameters of peripheral blood, the degree of burn damage, survival and life expectancy of fallen animals. The results of tests evaluating the therapeutic effectiveness of the tested composition showed that a single subcutaneous injection of a medicinal product at a dose of 20 mg/kg followed by application of an anti-burn ointment based on bee podmore and St. John’s wort oil at intervals of 24, 48 and 168 hours accelerated the formation of a burn scab by 1.75 times (p < 0.01), complete rejection of the burn scab — by 1.15 times (p < 0.05), the complete healing of the burn wound accelerated by 1.18 times compared with the control groups, thereby increasing the survival rate to 87.5% (p < 0.05) of animals exposed to two-factor exposure to the affected factors, while increasing the average life expectancy to 28.0 days versus 6.5 days in the control (irradiation + burn).
Texto integral

Sobre autores
Timur Gaynutdinov
Federal Center for Toxicological, Radiation and Biological Safety; Kazan Federal University; Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation
Autor responsável pela correspondência
Email: gtr_timur@mail.ru
ORCID ID: 0000-0003-3832-883X
PhD. Biol. nauk, ved. nauk. sotr. Federal State Budgetary Scientific Institution “Federal Center for Toxicological, Radiation and Biological Safety” (FGBNU FTSTRB-VNIVI); art. scientific. sotr. Kazan Federal University (KFU)
Rússia, Kazan; Kazan; MoscowKonstantin Vagin
Federal Center for Toxicological, Radiation and Biological Safety; Kazan Federal University
Email: kostya9938@yandex.ru
ORCID ID: 0000-0003-4396-614X
Doctor of Biological Sciences, Head of the Laboratory, Ved. sci. FGBNU FTSTRB-VNIVI; art. scientific. sotr. KFU
Rússia, Kazan; KazanRamzi Nizamov
Federal Center for Toxicological, Radiation and Biological Safety
Email: gtr_timur@mail.ru
ORCID ID: 0000-0002-8595-0800
Dr. veterinary sciences, chief scientist
Rússia, KazanBibliografia
- Shizuyo S. Rediscovery of an old article reporting that the area around the epicenter in Hiroshima was heavily contaminated with residual radiation, indicating that exposure doses of A-bomb survivors were largely underestimated. J. Radiat. Res. 2017;58(5):745–754.
- Gorbunov N.V., Kiang J.G. Ghrelin Therapy Decreases Incidents of Intracranial Hemorrhage in Mice after Whole-Body Ionizing Irradiation Combined with Burn Trauma. Int. J. Mol. Sci. 2017;18(8):1693.
- Kiang J.G., Smith J.T., Cannon G. et al. Ghrelin, a novel therapy, corrects cytokine and NF-κB-AKT-MAPK network and mitigates intestinal injury induced by combined radiation and skin-wound trauma. Cell & Biosci. 2020;10:63.
- Medhora M., Gasperetti T. Schamerhorn A. et al. Wound Trauma Exacerbates Acute, but not Delayed, Effects of Radiation in Rats: Mitigation by Lisinopril. Int. J. Mol. Sci. 2020;21(11):3908.
- Cancio L.C., Sheridan R.L., Dent R. et al. Guidelines for Burn Care Under Austere Conditions: Special Etiologies: Blast, Radiation, and Chemical Injuries. J. Burn. Care Res. 2017;38(1):482–496.
- Gaynutdinov T.R, Idrisov A.M., Vagin K.N. et al. Simulation of radiation-thermal illness and a way to its treatment. Dokkyo J. Med. Sci. 2021;48(02):369–377. http://doi.org/10.4155/fsoa-2017-0061.
- Philippe F., Melanie D., Andreina G. et al. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing. Int. J. Radiat. Biol. 2017;93(3):340–350. http://doi.org/10.1080/09553002.2017.1242814
- Kiang J.G., Smith J.T., Anderson M.N. et al. Hemorrhage enhances cytokine, complement component 3, and caspase-3, and regulates microRNAs associated with intestinal damage after whole-body gamma-irradiation in combined injury. Plos ONE. 2017;12(9): e0184393.
- Kiang J.G., Zhai M., Bolduc D.L. et al. Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma. Radiat. Res. 2017; 188(5):476–490.
- Cravens A., Payne J., Smolke C.D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 2019;10:2142
- Pham J.V., Yilma M.A., Feliz A. et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front.Microbiol. 2019;10:1404.
- Пручкина З.В., Сомов Г.П., Краснова Л.В., Ненада Е.Н. Авт. свидетельство № 952260 СССР, МПК A61K 39/00. Способ получения диагностикума для проведения реакции бентонитовой флокуляции. № 3231719/28-13, заявл. 04.01.1981, опубл. 23.08.1982. 3 с. [Pruchkina Z.V., Somov G.P., Krasnova L.V., Nenada E.N. Author’s certificate No. 952260 of the USSR, IPC A61K 39/00. Method of obtaining diagnostics for carrying out bentonite flocculation reaction: No. 3231719/28-13, Requested. 04.01.1981, publ. 23.08.1982. 3 p. (in Russ)]
- Иванов А.В., Низамов Р.Н., Конюхов Г.В., Иванов А.А., Белецкий С.О., Тухфатуллов М.З., Буланова О.Г., Тухфатуллов З.Л. Патент № 2523551 C1 Российская Федерация, МПК А61К 35/64. Мазь для лечения ожогов. № 2013122988/15, заявл. 20.05.2013, опубл. 20.07.2014. 6 c. [Ivanov A.V., Nizamov R.N., Konyukhov G.V., Ivanov A.A., Beletsky S.O., Tukhfatullov M.Z., Bulanova O.G., Tukhfatullov Z.L. Patent No. 2523551 C1 Russian Federation, IPC A61K 35/64. Ointment for the treatment of burns. No 2013122988/15, declared on 20.05.2013, publ. 20.07.2014. 6 p. (In Russ)].
- Иванов А.В., Конюхов Г.В., Иванов А.А., Белецкий С.О., Тухфатуллов М.З., Буланова О.Г., Фазлиахметов Р.Г. Патент № 2549451 C2 Российская Федерация, МПК А61К 35/66, А61К 36/38, А61К 43/00. Способ лечения комбинированного радиационно-термического поражения. № 2013122987/15, заявл. 20.05.2013, опубл. 27.04.2015 Бюл. № 12. 8 с. [Ivanov A.V., Konyukhov G.V., Ivanov A.A., Beletsky S.O., Tukhfatullov M.Z., Bulanova O.G., Fazliakhmetov R.G. Patent No. 2549451 C2 Russian Federation, IPC A61K 35/66, A61K 36/38, A61K 43/00. Method for treating combined radiation-thermal injury. No. 2013122987/15, declared 20.05.2013, published 27.04.2015 Bulletin No. 12. 8 p. (in Russ)].
- Beckmann N., Pugh A.M., Caldwell C.C. Burn injury alters the intestinal microbiome’s taxonomic composition and functional gene expression. Plos ONE. 2018;13(10):e0205307.
- King G.L., Sandgren D.J., Mitchell J.M. et al. System for Scoring Severity of Acute Radiation Syndrome Response in Rhesus Macaques (Macaca mulatta). Comparative Med. 2018;68(6):474–488.
- Spronk I., Van Loey N.E.E., Sewalt C. et al. Recovery of health-related quality of life after burn injuries: An individual participant data meta-analysis. Plos ONE. 2020;15(1):e0226653.
- Кудряшов Ю.Б. Лучевое поражение. М.: МГУ, 1987. 232 с. [Kudryashov Yu.B. Radiation damage. Moscow: Moscow State University, 1987. 232 p. (In Russ)].
- Кузин А.М., Копылов В.А. Радиотоксины. М.: Наука, 1983. 174 с. [Kuzin A.M., Kopylov V.A. Radiotoxins. Moscow: Nauka, 1983. 174 p. (In Russ)].
- Малиев В.М., Бижокас В.А., Киршин В.А., Попов Д.Н. Противорадиационная вакцина и специфические средства диагностики и терапии радиационных поражений. Вестн. Владикавказского научн. центра. 2002;2(3):12–28. [Maliev V.M., Bizhokas V.A., Kirshin V.A., Popov D.N. Anti-radiation vaccine and specific means of diagnosis and therapy of radiation lesions. Bull. Vladikavkaz Scientific Center. 2002;2(3):12–28. (In Russ)].
- Равилов А.З., Низамов Р.Н. Ветеринарная радиоэкология и радиоиммунология. Казань: ФЭН, 2000. 593 c. [Ravilov A.Z., Nizamov R.N. Veterinary radioecology and radioimmunology. Kazan: FEN, 2000. 593 p. (In Russ)].
- Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 2002;7:405–410.
- Волкова П.Ю. Адаптивные реакции растений на действие ионизирующего излучения в низких дозах: Дис. … д-ра биол. наук. Обнинск: ФГБНУ “Всеросс. науч.-исслед. ин-т радиологии и агроэкологии”, 2020. 390 с. [Volkova P.Y. Adaptive reactions of plants to the effect of ionizing radiation in low doses: dis. ... Doctor of Biological Sciences. Obninsk: FSBI “All-Russian Scientific Research. Institute of Radiology and Agroecology”, 2020. 390 p. (In Russ)].
- Иванов А.А. Анафилактойдные механизмы первичной реакции на облучения. В кн.: Иммунотерапия экспериментальной острой лучевой болезни: Под ред. Клемпарской Н.Н. М.: Энергоиздат, 1981. С. 32–43. [Ivanov A.A. Anaphylactoid mechanisms of the primary reaction to radiation. In: Immunotherapy of experimental acute radiation sickness: Ed. Klemparsky N.N. M.: Energoizdat, 1981. P. 32-43. (In Russ)].
- Pleguezuelo D.E., Sánchez-Ramón S. New choices for treatment with subcutaneous immunoglobulins. Med. Clin. (Barc). 2017;148(2):86–90.
- Гайнутдинов Т.Р., Рыжкин С.А., Вагин К.Н. и др. Изучение клинико-гематологических и иммунологических показателей при оценке противорадиационной эффективности терапевтического средства на основе микроорганизма Fusobacterium necrophorum. Мед. радиология и радиац. безопасность. 2024;69(3):19–25. [Gaynutdinov T.R., Ryzhkin S.A., Vagin K.N. et al.Study of clinical, hematologic and immunologic parameters in assessing the anti-radiation efficacy of the therapeutic agent based on the microorganism Fusobacterium necrophorum. Мedical Radiology and Radiation Safety. 2024;69(3):19–25. (In Russ)]. http://doi.org/10.33266/1024-6177-2024-69-3-19-25.
- Гайнутдинов Т.Р., Рыжкин С.А., Шавалиев Р.Ф. и др. Оценка противорадиационной эффективности лечебного средства на основе Staphylococcus aureus. Мед. экстрем. ситуаций. 2024;(2):47–55. [Gaynutdinov T.R., Ryzhkin S.A., Shavaliev R.F. t al. Evaluation of anti-radiation efficacy of the Staphylococcus aureus-derived therapeutic agent. Extreme Medicine. 2024;(2):47–55. (In Russ)] http://doi.org/10.47183/mes.2024.023.
- Calvi L.M., Frisch B.J., Kingsley P.D. et al. Acute and late effects of combined internal and external radiation exposures on the hematopoietic system. Int. J. Radiat. Biol. 2019;95(11):1447–1461.
- Bernabé P., Becherán, L., Cabrera-Barjas G. et al. Chilean crab (Aegla cholchol) as a new source of chitin and chitosan with antifungal properties against Candida spp. Int. J. Biol. Macromol. 2020;15(149):962–975.
- Shahbaz U. Chitin, Characteristic, Sources, and Biomedical Application. Curr. Pharm. Biotechnol. 2020;21(14):1433–1443.
Arquivos suplementares
