Cytogenetic disorders depending on hypermethylation of gene promoters in exposed individuals: final research results
- Authors: Kuzmina N.S.1,2, Lapteva N.S.1, Rubanovich A.V.1
-
Affiliations:
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences
- N.N. Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science
- Issue: Vol 64, No 4 (2024)
- Pages: 339-350
- Section: Radiation Genetics
- URL: https://journals.rcsi.science/0869-8031/article/view/273652
- DOI: https://doi.org/10.31857/S0869803124040014
- EDN: https://elibrary.ru/LONKJR
- ID: 273652
Cite item
Abstract
The results of the study of hypermethylation of promoters of the cell cycle genes (RASSF1A, p16/INK4A, p14/ARF, p53, ATM), antioxidant protection (GSTP1, SOD3), estrogen receptor (ESR1) are summarized in individuals exposed to chronic or fractionated irradiation in the range of small and medium doses (101 people, 24–78 years old: the liquidators of the accident at the Chernobyl nuclear power plant and adult residents of territories contaminated with radionuclides, 135–688 kBq/m2), in the aspect of the relationship of these epigenetic modifications with the cytogenetic status of the individual. Multiple regression analysis showed that the frequency of both simple and complex exchange aberrations of the chromosomal type is associated with the methylation status of the complex of the studied genes (β = 0.504, p = 1.9E-7 and β = 0.349, p = 3.6E-4, respectively), but not with age (β = -0.122, p = 0.178 and β = 0.153, p = 0.109). In general, highly significant differences were demonstrated between groups of exposed individuals with different epigenetic status (number of hypermethylated genes) for all considered cytogenetic parameters, with the exception of chromatid-type aberrations (Kruskal–Wallis test: p = 2E-4 and p = 5E-8 for the total frequency of cytogenetic disorders and rearrangements of the chromosomal type, respectively). The level of cytogenetic disorders of the chromosomal type increases with an increase in the number of methylated genes in irradiated individuals. The data obtained may point to general patterns in the mechanisms of induction and preservation over the years of the considered genetic and epigenetic effects of radiation.
Full Text

About the authors
Nina S. Kuzmina
N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences; N.N. Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science
Author for correspondence.
Email: nin-kuzmin@yandex.ru
ORCID iD: 0000-0002-2441-0122
Russian Federation, Moscow; Moscow
Nellya Sh. Lapteva
N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: nellya912@yandex.ru
ORCID iD: 0009-0003-3385-5005
Russian Federation, Moscow
Aleksandr V. Rubanovich
N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: rubanovich@vigg.ru
ORCID iD: 0000-0002-1251-8806
Russian Federation, Moscow
References
- Kuzmina N.S. Radiation-Induced DNA Methylation Disorders: In Vitro and In vitro Studies. Biol. Bull. 2021; 48(11):2015-2037. http://doi.org/10.1134/S1062359021110066
- Horvath S., Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018;19(6):371-384. http://doi.org/10.1038/s41576-018-0004-3
- Levine M.E., Lu A.T., Quach A. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573-591. http://doi.org/10.18632/aging.101414
- McCrory C., Fiorito G., Hernandez B. et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. A. Biol. Sci. Med. Sci. 2021;76(5):741-749. http://doi.org/10.1093/gerona/glaa286
- McCartney D.L., Hillary R.F., Stevenson A.J. et al. Epigenetic prediction of complex traits and death. Genome Biol. 2018;19(1):136. http://doi.org/10.1186/s13059-018-1514-1
- Kuzmina N.S., Lapteva N.Sh., Rubanovich A.B. Hypermethylation of genepromoters in peripheral blood leukocytes in humans long term after radiation exposure. Environ. Res. 2016;146:10-17. http://doi.org/10.1016/j.envres.2015.12.008
- Kuzmina N.S., Lapteva N.Sh., Rusinova G.G. et al. Gene hypermethylation in blood leukocytes in humans long term after radiation exposure — validation set.Environ. Poll. 2018;234:935-942. http://doi.org/10.1016/j.envpol.2017.12.039
- Kuzmina N.S., Lapteva N. Sh., Rubanovich A.V. Hypermethylation of Gene Promoters in Blood Leukocytes of Irradiated Individuals—Final Research Results. Russ. J. Genetics. 2022;58(11):1373–1384. http://doi.org/10.1134/S1022795422110060
- Isubakova D.S., Tsymbal O.S., Bronikovskaya E.V. et al. Methylation of promoters of apoptosis-related genes in blood lymphocytes of workers exposed to occupational external irradiation. Bull. Experim. Biol. Med. 202;171(3):357-361. http://doi.org/10.1007/s10517-021-05227-y
- Исубакова Д.С., Цымбал О.С., Литвяков Н.В. и др. Cвязь метилирования промоторов генов апоптоза в лимфоцитах крови с частотой хромосомных аберраций и дозой облучения. Экол. генетика. 2022;20(4):315-323. [Isubakova D.S., Tsymbal O.S., Litvyakov N.V. et al. Relationship between methylation of promoters of apoptosis genes in blood lymphocytes with the frequency of chromosomal aberrations and the dose of radiation. Ecological Genetics. 2022;20(4):315-323. (in Russ.)]. http://doi.org/10.17816/ecogen109119
- Blinova E.A., Nikiforov V.S., Kotikova A.I. et al. Methylation status of apoptosis genes and intensity of apoptotic death of peripheral blood lymphocytes in persons chronically exposed to radiation. Mol. Biol. 2022;56(6):993-1002. http://doi.org/10.1134/s002689332205003x
- Kuzmina N.S., Lapteva N.Sh., Rubanovich A.V. The association between hypermethylation of gene promoters and cytogenetic disturbances in humans exposed to radiation as a result of the Сhernobyl accident. Biol. Bull. 2021;48(12):2099–2104. http://doi.org/10.1134/S1062359021120086
- Сусков И.И., Агаджанян А.В., Кузьмина Н.С. и др. Проблема трансгенерационного феномена геномной нестабильности у больных детей разных возрастных групп после аварии на ЧАЭС. Радиац. биология. Радиоэкология. 2006;46(4):466-474. [Suskov I.I., Agadzhanyan A.V., Kuz’mina N.S. i dr. Problema transgeneratsionnogo fenomena genomnoy nestabil’nosti u bol’nykh detey raznykh vozrastnykh grupp posle avarii na ChAES = The problem of the transgeneration phenomenon of genome instability in sick children of different age groups after the accident at the Chernobyl nuclear power plant. Radiatsionnaya biologiya. Radioekologiya. 2006;46(4):466-474. (in Russ)].
- Сальникова Л.Е., Фомин Д.К., Елисова Т.В. и др. Изучение связи цитогенетических и эпидемиологических показателей с генотипами у ликвидаторов последствий аварии на ЧАЭС. Радиац. биология. Радиоэкология. 2008;48(3):303-312. [Sal’nikova L.Ye., Fomin D.K., Yelisova T.V. i dr. Izucheniye svyazi tsitogeneticheskikh i epidemiologicheskikh pokazateley s genotipami u likvidatorov posledstviy avarii na ChAES = Genotype Dependence of Cytogenetic and Epidemiological Characteristics in the Liquidators of the Accident at the ChNPP. Radiatsionnaya biologiya. Radioekologiya. 2008;48(3):303-312. (in Russ.)].
- Han Y., Franzen J., Stiehl T. et al. New targeted approaches for epigenetic age predictions. BMC Biol. 2020;18:71. http://doi.org/10.1186/s12915-020-00807-2
- https://soyuz.by/projects/ldfklr/programma-razrabotka-innovacionnyh-genogeograficheskih-i-genomnyh-tehnologiy-identifikacii-lichnosti-i-individualnyh-osobennostey-cheloveka-na-osnove-izucheniya-genofondov-regionov-soyuznogo-gosudarstva-dnk-identifikaciya)
- Averbeck D., Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int. J. Mol. Sci. 2021;22 (20):11047. http://doi.org/10.3390/ijms222011047
- Tričković J.F., Šobot A.V., Joksić I., Joksić G. Telomere fragility in radiology workers occupationally exposed to low doses of ionising radiation. Arh. Hig. Rad. Toksikol. 2022;73(1):23-30. http://doi.org/10.2478/aiht-2022-73-3609
- Chen B., Dai Q., Zhang Q. et al. The relationship among occupational irradiation, DNA methylation status, and oxidative damage in interventional physicians. Medicine (Baltimore). 2019;98(39):e17373. http://doi.org/10.1097/MD.0000000000017373
- Kamstra J.H., Hurem S., Martin L.M. et al. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci. Rep. 2018;8(1):15373. http://doi.org/10.1038/s41598-018-33817-w
- Laanen P., Saenen E., Mysara M. et al. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. Front. Plant Sci. 2021;12:611783. http://doi.org/10.3389/fpls.2021.611783
- Rossnerova A., Izzotti A., Pulliero A. et al. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int. J. Mol. Sci. 2020;21(19): 7053. http://doi.org/10.3390/ijms21197053
- Jiménez-Garza O., Ghosh M., Barrow T.M., Godderis L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front. Public Health. 2023;11: 1073658. http://doi.org/10.3389/fpubh.2023.1073658
- Yang C., Gu L., Deng D. Distinct susceptibility of induction of methylation of p16ink4a and p19arf CpG islands by X-radiation and chemical carcinogen in mice. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014;768:42-50. http://doi.org/10.1016/j.mrgentox.2014.04.012
- Xing C., Wang Q., Tian H. et al. Hypermethylation and downregulation of tumor suppressor gene p16 in benzene poisoning. Wei Sheng Yan Jiu. 2012;41(2):247-50. (in Chinese).
- Yang P., Ma J., Zhang B. et al. CpG site-specific hypermethylation of p16INK4a in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol. Biomarkers Prev. 2012;21(1):182–90. http://doi.org/10.1158/1055-9965.EPI-11-0784
- Hou L., Zhang X., Zheng Y. et al. Altered methylation in tandem repeat element and elemental component levels in inhalable air particles. Environ. Mol. Mutagen. 2014;55(3):256-65. http://doi.org/10.1002/em.21829
- Kovatsi L., Georgiou E., Ioannou A. et al. p16 promoter methylation in Pb2+ -exposed individuals. Clin. Toxicol. (Phila). 2010;48(2):124-8. http://doi.org/10.3109/15563650903567091
- Yu L.B., Tu Y.T., Huang J.W. et al. Hypermethylation of CpG islands is associated with increasing chromosomal damage in chinese lead-exposed workers. Environ. Mol. Mutagen. 2018;59(6):549-556. http://doi.org/10.1002/em.22194
- Wang Y., Duan X., Zhang Y. et al. DNA methylation and telomere damage in occupational people exposed to coal tar pitch. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2015;33(7):507-11. (in Chinese).
- Yang J., Chen W., Li X. et al. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J. Occup. Environ. Med. 2014; 56(5):489-92. http://doi.org/10.1097/JOM.0000000000000168
- Rusiecki J.A., Beane Freeman L.E., Bonner M.R. et al. High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study. Environ. Mol. Mutagen. 2017;58(1):19-29. http://doi.org/10.1002/em.22067
- Devóz P.P., Reis M.B.D., Gomes W.R. et al. Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere. 2021;269:128758. http://doi.org/10.1016/j.chemosphere.2020.128758
- Pavanello S., Pesatori A.C., Dioni L. et al. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis. 2010;31(2):216-21. http://doi.org/10.1093/carcin/bgp278
Supplementary files
