Potential role of adaptive response by cellular bioenergetic sensor of AMP-activated protein kinase in the implementation of the action of radioprotectors from alpha1-adrenergic agonists

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AMP-activated protein kinase as a universal metabolic sensor regulates the processes of anabolism and catabolism in the body. Activation of AMP-activated protein kinase occurs with a decrease in ATP content in the cell, which occurs under the influence of stress of various etiologies: with fasting, acute hypoxia, physical exertion, with radiation lesions and many other pathophysiological conditions of the body. The increase in its activity can be initiated pharmacologically through G-protein-coupled receptors, including ala1-adrenoagonists, exhibiting unique radioprotective properties on the example of indralin. AMP-activated protein kinase takes part through succinate dehydrogenase (respiratory chain complex II). in enhancing cellular respiration and ATP synthesis. According to the existing hypothesis, with excessive stimulation of AMP-activated protein kinase by alpha1-adrenoagonists, acute cellular hypoxemia develops, which is one of the main mechanisms for the implementation of their action. Under these conditions, the reduction of cell death from acute hypoxia with the stimulation of AMP-activated protein kinase and the participation of nitric monoxide is carried out by the transition to aerobic glycosis. The second important mechanism of protection by alpha1-agonists at large doses of radiation implements an anti-apoptic effect through the PPAR-AMPK-PGC-1α axis, maintaining the functional state of mitochondria. When stimulated with alpha1-adrenoagonists, sirtuin 1 provides an increase NAD+ in the cell, and through PGC-1α mitochondrial biogenesis is carried out, the required intensity of metabolism, cellular respiration and ATP synthesis. These processes may be facilitated by a closely related alpha-1-adrenoagonist cell cycle arrest associated with AMP-protein kinase, which favors affected DNA repair. The potential anti-apoptic properties of the alpha1-adrenoagonist igralin may contribute to the development of high radioprotective properties of the radriorotector at ultra-lethal doses of radiation.

Full Text

Restricted Access

About the authors

Mikhail V. Vasin

Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation; Research Test Center (Aerospace Medicine and Military Ergonomics)

Author for correspondence.
Email: vv4sin80@yandex.ru

Central Research Institute of the Air Force of the Ministry of Defense of the Russian Federation

Russian Federation, Moscow; Moscow

Igor B. Ushakov

State Scientific Center – Burnazyan Federal Medical Biophysical Center Federal Medical Biological Agency of Russian Federation

Email: iushakov@fmbcfmba.ru
Russian Federation, Moscow

References

  1. Васин М.В., Антипов В.В., Чернов Г.А. и др. Роль вазоконстрикторного эффекта в реализации противолучевых свойств индралина в опытах на собаках. Радиац. биология. Радиоэкология. 1997;37(1.):46-55 [Vasin M.V., Antipov V.V., Chernov G.A. et al. The role of the vasoconstrictor effect in the implementation of the radioprotective properties of indralin in experiments on dogs. Radiats. biol. Radioecol. 1997;37(1.):46-55 (In Russ.)]
  2. Васин М.В., Ушаков И.Б., Королева Л.В., Антипов В.В. Роль клеточной гипоксии в противолучевом эффекте радиопротекторов. Радиац. биология. Радиоэкология. 1999;l39(2-3):238-348. [Vasin M.V., Ushakov I.B., Koroleva L.V., Antipov V.V. The role of cellular hypoxia in the radiop effect of radioprotectants. Radiats. biol. Radioecol. 1999l39(2-3):238-348 (In Russ.)]
  3. Васин М.В., Ильин Л.А., Ушаков И.Б. Феномен противолучевой защиты индралином крупных животных (собак) и его экстраполяция на человека. Радиац. мед. радиац. безопасность. 2022;67(3):5-12. [Vasin M.V., Ilyin L.A., Ushakov I.B. The phenomenon of radiation protection by indralin of large animals (dogs) and its extrapolation to humans. Radiats. med. radiats. safety. 2022;67(3):5-12. (in Russ)]
  4. Васин М.В., Ушаков И.Б. Анализ роли биоэнергетических процессов под действием альфа1-адренергических агонистов в реализации их противолучевых свойств. Биофизика. 2021;66(3):590–596. [Vasin M.V., Ushakov I.B. Analysis of the role of bioenergetic processes under the action of alpha 1 -adrenergic agonists in the implementation of their radioprotective properties. Biophysics. 2021;66(3):590–596. (in Russ.)]
  5. Aslam M., Ladilov Yu. Emerging role of cAMP/AMPK signaling. Cells. 2022;11(2):308. https://doi: 10.3390/cells11020308
  6. Sanli T., Rashid A., Liu C. et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 2010;78(1):221-229. https://doi.org/10.1016/jiijrobp.2010.03.005
  7. Sanli T., Storozhuk Y., Linher-Melville K. et al. Ionizing radiation regulates the expression of AMP-activated protein kinase (AMPK) in epithelial cancer cells: modulation of cellular signals regulating cell cycle and survival. Radiother. Oncol. 2012;102(3):459-465. https://doi.org/10.1016/j.radonc.2011.11.014.
  8. Zannela V.E., Cojocari D., Hilgendorf S. et al. AMPK regulates metabolism and survival in response to ionizing radiation. Radiother. Oncol. 2011;99(3): 293-299.
  9. Dengler F. Activation of AMPK under hypoxia: many roads leading to rome. Int. J. Mol. Sci. 2020;21(7): 2428. doi: 10.3390/ijms21072428.
  10. Chun Y., Kim J. AMPK–mTOR signaling and cellular adaptations in hypoxia. Int. J. Mol. Sci. 2021;22(18): 9765. doi: 10.3390/ijms22189765
  11. Price N.L., Gomes A.P., Ling A.J. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–690.
  12. Rahnasto-Rilla M., Tyni J., Huovinen M. et al. Natural poly-phenols as sirtuin 6 modulators. Sci. Rep. 2018;8:4163.
  13. Xu M., Zhao Y.-T., Song Y. et al. Alpha1-adrenergic receptors activate AMP-activated protein kinase in rat hearts. Acta Рhysiologica Sinica. 2007;59(2):175-182.
  14. Lee Y.-J., Kim H.S., Seo H.S. et al. Stimulation of alpha 1 -adrenergic receptor ameliorates cellular functions of multiorgans beyond vasomotion through PPARδ. PPAR Res. 2020;020:3785137 https://doi.org/10.1155/2020/3785137
  15. Hutchinson D.S., Bengtsson T. AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by α 1 -adrenoceptors causing glucose uptake. Diabetes. 2006;55(3):682–690. https://doi: 10.2337/diabetes.55.03.06.db05-0901
  16. Pang T., Rajapurohitam V., Cook M.A., Karmazyn M. Differential AMPK phosphorylation sites associated with phenylephrine vs. antihypertrophic effects of adenosine agonists in neonatal rat ventricular myocytes. Am. J. Physiol. Heart. Circ. Physiol. 2010;298(5):H1382-H390. https://doi.org/10.1152/ajpheart.00424.2009.
  17. Kröller-Schön S., Daiber A., Schulz E. Modulation of vascular function by AMPK: assessment of NO bioavailability and surrogates of oxidative stress. Methods Mol. Biol. 2018;732:495-506. https://doi: 10.1007/978-1-4939-7598-3_31
  18. Rodriguez C., Munoz M., Contreras C., Prieto D. AMPK, metabolism, and vascular function. FEBS J. 2021;288.(12):3746-3771. https://doi.org/10.1111/febs.15863
  19. Кулинский В.И., Климова А.Д., Яшунский В.Г., Алпатова Т.В. Механизм радиозащитного действия агонистов катехоламиновых рецепторов. Включение в радиозащитный эффект обоих подтипов альфа-адренорецепторов. Радиобиология. 1986;26(1):11-16. [Kulinsky V.I., Klimova A.D., Yashunsky V.G., Alpatova T.V. Mechanism of radioprotective action of catecholamine receptor agonists. Inclusion of both subtypes of alpha-adrenergic receptors in the radioprotective effect. Radiobiology. 1986;26(1):11-16. (in Russ.)]
  20. Pyla R., Osman I., Pichavaram P. et al. Metformin exaggerates phenylephrine-induced AMPK phosphorylation independent of CaMKKβ and attenuates contractile response in endothelium-denuded rat aorta. Biochem. Pharmacol. 2014;92(2):266-279. https://doi.org/10.1016/j.bcp.2014.08.024.
  21. Jeon Y.H., He M., Austin J. et al. Adiponectin enhances the bioenergetics of cardiac myocytes via an AMPK- and succinate dehydrogenase-dependent mechanism. Cell Signal. 2021;78:109866. https://doi.org/10.1016/j.cellsig.2020.109866.
  22. Sadria M., Layton A.T. Interactions among mTORC, AMPK and SIRT: a computational model for cell energy balance and metabolism. Cell Communication and Signaling (CCS). 2021;19:57.
  23. Васин М.В., Ушаков И.Б. Активация комплекса II дыхательной цепи во время острой гипоксии как индикатор ее переносимости. Биофизика. 2018;63(2):329-333. [Vasin M.V., Ushakov I.B. Activation of complex II of the respiratory chain during acute hypoxia as an indicator of its tolerance. Biophysics. 2018;63(2):329-333. (in Russ.)]
  24. Антипов В.В., Васин М.В., Гайдамакин А.Н. Видовые особенности реагирования СДГ лимфоцитов у животных на острую гипоксическую гипоксию и ее связь с радиорезистентностью организма. Косм. биол. авиакосм. мед. 1989;23(2):63-66. [Antipov V.V., Vasin M.V., Gaydamakin A.N. Species characteristics of the response of SDG lymphocytes in animals to acute hypoxic hypoxia and its relationship with body radioresistance. Cosm. biol. aviakosm. med. 1989;23(2):63-66. (in Russ.)]
  25. Кондрашова М.Н., Маевский Е.Н., Бабаян Г.В. и дp. Адаптация к гипоксии посредством переключения метаболизма на превращения янтарной кислоты. B cб.: Митоxондpии. Биоxимия и ультpаcтpуктуpа M.: Наука, 1973:112–129. [Kondrashova M.N., Mayevsky E.N., Babayan G.V. et al. Adaptation to hypoxia by switching metabolism to succinic acid transformations. In: Mitochondria. Biochemistry and ultrastructure. Moscow: Nauka, 1973: 112-129 pp. (in Russ.)]
  26. Walsh M.P. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life. 2011;63(11):987-1000. doi: 10.1002/iub.527
  27. Vasin M.V., Ushakov I.B., Kovtun V.Yu. et al. The targets for radioprotective and mitigatory action of radioprotector indralin. JRR. 2014; 2(2):3-9. https://doi.org/10.12966/jrr.06.01.2014
  28. Васин М.В., Ганьшина Т.С., Мирзоян Р.С. и др. Митигирующий эффект нитратов (монизола) на фармакодинамические сдвиги в сердечно-сосудистой системе под действием радиопротектора индралина. Бюлл. экспер. биол. мед. 2018;65(3):340-232. [Vasin M.V., Ganshina T.S., Mirzoyan R.S. et al. The mitigating effect of nitrates (monizole) on pharmacodynamic shifts in the cardiovascular system under the action of the indralin radioprotector. Bull. exp. biol. med. 2018;65(3):340-232. (in Russ.)]
  29. Lira V.A., Brown D.L., Lira A.K. et al. Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J. Physiol. 2010;588(18):3551-3566. https://doi.org/10.1113/jphysiol.2010.194035.
  30. Deshmukh A.S., Long Y.C., de Castro Barbosa T. et al. Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase (AMPK) α1-specific activity and glucose transport in human skeletal muscle. Diabetologia. 2010;53(6):1142–1150. https://doi.org/10.1007/s00125-010-1716-x
  31. Dillard J., Meng X., Nelin L. et al. Nitric oxide activates AMPK by modulating PDE3A in human pulmonary artery smooth muscle cells. Physiol. Report. 2020l8(17): e14559. https://doi.org/10.14814/phy2.14559.
  32. Benamar A., Rolletschek H., Borisjuk L. Nitrite–nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 2008;1777(10) 1268-1275.
  33. Cooper C., Giulivi C. Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am. J. Physiol. Cell Physiol. 2007;292(6):C1993-C2003. https://doi.org/10.1152/ajpcell.00310.2006
  34. Zippel N., Loot A.E., Stingl H. et al. Endothelial AMP-activated kinase α1 phosphorylates eNOS on Thr495 and decreases endothelial NO formation. Int. J. Mol. Sci. 2018;19(9): 2753. https://doi.org/10.3390/ijms19092753
  35. Leung S.W.S., Shi Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacol. Sin. 2022;43:251–259.
  36. Kim E.J., Lee M., Kim D. Y. et al. Mechanisms of energy metabolism in skeletal muscle mitochondria following radiation exposure. Cells. 2019;8(9):950. https://doi.org/10.3390/cells8090950
  37. Richardson R.B., Harper M.E. Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget. 2016;7(16): 21469-21483. doi: 10.18632/oncotarget.7412
  38. Shimura T., Noma N., Sano Y. et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother. Oncol. 2014;112:2. https://doi.org/10.1016/j.radonc.2014.07.015
  39. Коноплянников А.Г., Коноплянникова О.А., Проскуряков С.Я. Реакция “ишемия/реперфузия” для стволовых клеток двух “критических” систем клеточного обновления организма. Радиац. биология. Радиоэкология. 2005;45(5):605-609. [Konoplyannikov A.G., Konoplyannikova O.A., Proskuryakov S.Ya. Reaction “ischemia/reperfusion” for stem cells of two “critical” systems of cellular renewal of the body. Radiats. Biology. Radioecology. 2005;45(5):605-609. (In Russ.)]
  40. Васин М.В., Ушаков И.Б., Ковтун В.Ю. и др. Противолучевые свойства индралина при сочетанном применении с монизолом при местных острых и поздних лучевых поражениях в условиях локального гамма-облучения кожи. Бюлл. экспер. иол. мед. 2015;159(6):720-722. [Vasin M.V., Ushakov I.B., Kovtun V.Yu. et al. Radioprotective properties of indralin when used in combination with monisol in local acute and late radiation lesions under conditions of local gamma radiation of the skin. Bull. exp. biol. med. 2015;159(6):720-722. (In Russ.)]
  41. Васин М.В. Классификация противолучевых средств как отражение современного состояния и перспективы развития радиационной фармакологии.Радиац. биология. Радиоэкология. 2013;53(5):459-467. [Vasin M.V. Classification of radioprotective agents as a reflection of the current state and prospects for the development of radiation pharmacology. Radiats. biol. Radioecol. 2013;53(5):459-467. (In Russ.)]
  42. Bonkowski M.S., Sinclair D.A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 2016;17(11): 679–690.
  43. Li J., Zhao Y., Cao L. et al. AMPK activation of flavonoids from Psidium guajava leaves in L6 rat myoblast cells and L02 human hepatic cells. Evid. Based Complement Alternat. Med. 2019;2019:9209043. https://doi.org/10.1155/2019/9209043
  44. Vasin M.V. Bioflavonoids as Important Component of Biological Protection from Ionizing Radiation. Food Nutr. Sci. 2014;5(5):72-479. https://doi.org/10.4236/fns.2014.55056
  45. Васин М.В., Ушаков И.Б. Радиомодуляторы как средства биологической защиты от окислительного стресса при воздействии ионизирующей радиации. Успехи совр. биол. 2020;140(1):3-18. [Vasin M.V., Ushakov I.B. Radiomodulators as a means of biological protection against oxidative stress when exposed to ionizing radiation. Uspekhi sovr biol. 2020;140(1):3-18. (In Russ.)]
  46. Pyla R., Hartney T.J., Segar L. AICAR promotes endothelium-independent vasorelaxation by activating AMP-activated protein kinase via increased ZMP and decreased ATP/ADP ratio in aortic smooth muscle. J. Basic Clin. Physiol. Pharmacol. 2022. https://doi.org/10.1515/jbcpp-2021-0308.
  47. Kim S.G., Kim J.-R, Choi H.C. Quercetin-Induced AMP-activated protein kinase activation attenuates vasoconstriction through LKB1-AMPK signaling pathway. Med. Food. 2018;21(2):146-153. https://doi.org/10.1089/jmf.2017.4052
  48. Васин М.В., Ушаков И.Б., Ковтун В.Ю. и др. Влияние сочетанного применения кверцетина и индралина на процессы пострадиационного восстановления системы кроветворения при отрой лучевой болезни. Радиац. биология. Радиоэкология. 2011;51(2):247-251. [Vasin M.V., Ushakov I.B., Kovtun V.Yu. et al. The effect of the combined use of quercetin and indralin on the processes of post-radiation restoration of the hematopoietic system in acute radiation sickness. Radiat. biol. Radioecol. 2011; 51(2):247-251. (In Russ.)]
  49. Jansen T., Kvandova M., Daiber A. et al. The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation. Antioxidants (Basel). 2020;9(6):525. https://doi.org/10.3390/antiox9060525
  50. Joo M.S., Kim W.D., Lee K.Y. et al. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at Serine 550. Mol. Cell. Biol. 2016;36:1931–1942. https://doi.org/10.1128/MCB.00118-16
  51. Marino A., Hausenloy D.J., Andreadou I. et al. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic. Biol. Med. 2021;166:238-254. https://doi.org/10.1016/j.freeradbiomed.2021.02.047
  52. Pucci B., Kasten M., Giordano A. Cell сycle and аpoptosis. Neoplasia. 2000;2(4):291–299.
  53. Zinkel S., Gross A., Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Diff. 2006;13:1351–1359.
  54. Rabinovisch R.C., Samborsla B., Faubert B. et al. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Report. 2016;21(1):1-9.
  55. Shibata K., Katsuma S., Koshimizu T., et al. α1-Adrenergic receptor subtypes differentially control the cell cycle of transfected CHO cells through a cAMP-dependent mechanism involving p27 Kip1. J. Med. Chem. 2003;278(1):672-678. https://doi.org/10.1074/jbc.M201375200
  56. He P., Li Z., Xu F. et al. AMPK activity contributes to G2 arrest and DNA damage decrease via p53/p21 pathways in oxidatively damaged mouse zygotes. Int. Cell Dev. Biol. 2020;8:539485. https://doi.org/10.3389/fcell.2020.539485
  57. Fogarty S., Ross F.A., Ciruelos D.A. AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol. Cancer Res. 2016;14(8):683-695. doi: 10.1158/1541-7786.MCR-15-0479
  58. Квачева Ю.Е. Морфологические типы радиационно-индуцированной гибели клеток кроветворной ткани, ее биологическая суть и значимость на различных этапах развития острого радиационного поражения. Радиац. биология. Радиоэкология. 2002;42(3):287-292. [Kvacheva Yu.E. Morphological types of radiation-induced cell death of hematopoietic tissue, its biological essence and significance at various stages of the development of acute radiation damage.Radiat. biol. Radioecol. 2002;42(3):287-292. (In Russ.)]
  59. Maliev V., Bizokas V., Popov D. et al. Specific substances for diagnosis and therapy of radiation injyry. Veterinarija ir Zootechnika (Vet. Med. Zoot.). 2013;64(86):45-54.
  60. Орбели Л.А. Адаптационно-трофическая роль симпатической нервной системы и мозжечка и высшая нервная деятельность. Физиол. журн. СССР им. И.М. Сеченова. 1949;35(5):594–605. [Orbeli L.A. Adaptation-trophic role of sympathetic nervous system and cerebellum and higher nervous activity. Sechenov Physiol. J. USSR. 1949;35(5):594–605. (In Russ.)]
  61. Xuang B., Zhang Y., Li Y.-M. et al. Phenylephrine protects autotransplanted rabbit submandibular gland from apoptosis. Biochem. Biophys. Res. Commun. 2008;377(1):210-214. https://doi.org/10.1016/j.bbrc.2008.09.120
  62. Xiang B., Li Y.J., Zhang X.B. et al. Mechanism of the protective effect of phenylephrine pretreatment against irradiation-induced damage in the submandibular gland. Exp. Ther. Med. 2013;5(3):875-879. https://doi.org/10.3892/etm.2012.867
  63. Wang X.Y., Yu J., Zhang F.Y., Liu K.J., Xiang B. Phenylephrine alleviates  131 I radiation damage in submandibular gland through maintaining mitochondrial homeostasis. Int. J. Radiat. Oncol. Biol. Phys. 2019;104(3):644-655. https://doi.org/10.1016/j.ijrobp.2019.02.048
  64. Valks D.M., Cook S.A., Pham F.H. et al. Phenylephrine promotes phosphorylation of Bad in cardiac myocytes through the extracellular signal-regulated kinases 1/2 and protein kinase A. Mol. Cell Cardiol. 2002;34(7):749. https://doi.org/10.1006/jmcc.2002.2014
  65. Gao H., Chen L., Yang H.T. Activation of alpha1B-adrenoceptors alleviates ischemia/reperfusion injury by limitation of mitochondrial Ca2+ overload in cardiomyocytes. Cardiovasc. Res. 2007;75( 3):584-595. https://doi.org/10.1016/j.cardiores.2007.04.008
  66. Naderi R., Imani A., Faghihi M., Moghimian M. Phenylephrine induces early and late cardioprotection through mitochondrial permeability transition pore in the isolated rRat heart. J. Surg. Res. 2010;164(1):e37. https://doi.org/10.1016/j.jss.2010.04.060
  67. Turrell H.E., Rodrigo G.C., Norman R.I. et al. Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J. Mol. Cell Cardiol. 2011;51(3):370-380. https://doi.org/10.1016/j.yjmcc.2011.06.015.
  68. Васин М.В., Ушаков И.Б., Коровкина Э.П., Ковтун В.Ю. Противолучевые свойства индралина по снижению тяжести лучевого поражения слюнных желез. Радиац. биология. Радиоэкология. 2004;44(1):68-71. [Vasin M.V., Ushakov I.B., Korovkina E.P., Kovtun V.Yu. Anti-radiation properties of indralin to reduce the severity of radiation damage to the salivary glands//Radiac. biol. Radioecol. 2004;44(1):68-71. (In Russ.)]
  69. Wu J.-S., Lin T.-N., Wu K.K.J. Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. Cell Physiol. 2009;220(1):58. https://doi.org/10.1002/jcp.21730.90
  70. Passariello C.L., Zini M., Nassi P.A. et al. Upregulation of SIRT1 deacetylase in phenylphrine-treated cardiomyoblasts. Biochem. Biophys. Res. Commun. 2011;407(3):512-516. https://doi.org/10.1016/j.bbrc.2011.03.049
  71. Dong H.-W., Zhang L.-F., Bao S.-L. AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy. Eur. Rev. Med. Pharmacol. Sci. 2018;22(9):2757-2766. https://doi.org/10.26355/eurrev_201805_14973
  72. Xiang B., Han L., Wang X. et al. Nicotinamide phosphoribosyltransferase upregulation by phenylephrine reduces radiation injury in submandibular gland. Int. J. Radiat. Oncol. Biol. Phys. 2016;96(3):538-546. https://doi.org/10.1016/j.ijrobp.2016.06.2442
  73. Maestroni G.J., Togni M., Covacci V. Norepinephrine protects mice from acute lethal doses of carboplatin. Exp. Hematol. 1997;25(6):491-494.
  74. Васин М.В., Ушаков И.Б., Ковтун В.Ю. и др. Влияние радиопротектора индралина на гемотоксичность карбоплатины. Бюлл. экспер. биол. мед. 2006;141(4):422-424. [Vasin M.V., Ushakov I.B., Kovtun V.Yu. et al. Effect of indralin radioprotectant on carboplatin hemotoxicity. Bull. exp. biol. med. 2006;141(4):422-424. (In Russ.)]
  75. Shen B., Mao W., Ahn J.-C. et al. Mechanism of HN-3 cell apoptosis induced by carboplatin: Combination of mitochondrial pathway associated with Ca2+ and the nucleus pathways. Mol. Med. Rep. 2018;18(6):4978–4986. https://doi: 10.3892/mmr.2018.9507
  76. Yahyapour R., Amini P., Rezapour S. et al. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res. 2018;5(1):9. https://doi.org/10.1186/s4зщзщз0779-018-0156-7
  77. Васин М.В., Ушаков И.Б., Ковтун В.Ю. и др. Влияние радиопротектора индралина на течение острой GVH-болезни. Бюлл. экспер. биол. мед. 2008;146(11):507-511. [Vasin M.V., Ushakov I.B., Kovtun V.Yu. et al. Effect of the indralin radioprotector on the course of acute GVH disease. Bull. exp. biol. med. 2008;146(11):507-511. (In Russ.)]
  78. Xiang H.-C., Lin L.-X, Hu X-F. et al. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J. Neuroinflamm. 2019;6:34.
  79. Sonobe T., Akiyama T., Du C.-K., Pearson J.T. Serotonin uptake via plasma membrane monoamine transporter during myocardial ischemia‐reperfusion in the rat heart in vivo. Physiol. Rep. 2019;7(22):e14297. https://doi.org/10.14814/phy2.14297
  80. Rieder M., Laumann R., Witsch T. et al. Evaluation of serum serotonin as a biomarker for myocardial infarction and ischemia/reperfusion injury. Appl. Sci. 2020;10(18):6379. https://doi.org/10.3390/app10186379
  81. Васин М.В., Чернов Г.А., Антипов В.В. Широта радиозащитного действия индралина в сравнительных исследованиях на различных видах животных. Радиац. биология. Радиоэкология. 1997;37(6):896-904. [Vasin M.V., Chernov G.A., Antipov V.V. The window of the radioprotective effect of indralin in comparative studies on various animal species. Radiats. biol. Radioecol. 1997;37(6):896-904. (In Russ.)]
  82. Romano M.F., Lamberti A., Bisogni R. et al. Amifostine inhibits hematopoietic progenitor cell apoptosis by activating NF-κB/Rel transcription factors. Blood. 1999;94(2):4060-4066.
  83. Acosta J.C., Richard C., Delgado M.D. et al. Amifostine impairs p53-mediated apoptosis of human myeloid leukemia cells. Mol. Cancer Ther. 2003;2(9):893–900.
  84. Kurtulb N., Baha A.Y., Tolun F.I. Amifostine protects small bowel against radiation-induced apopitosis by reducing caspase-3. Sakarya Med. J. 2018.;8(3):611-619.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».