Cataractogenic Effects оf Low-Dose Radiation with Low LET: More not Than There. Report 1. Statement оf тhe Problem аnd Experiments оn Animals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Radiation disturbances in the lens are considered as the third most important effects of radiation, after mortality from cancer and diseases of the circulatory system (ICRP-118). In terms of the problem of the effects of low doses radiation with low LET (up to 100 mGy), interest in the dose relationship for the induction of disturbances in the lens after irradiation increases in a linear progression, as evidenced, among other things, by the chrono-dynamics of the increase in the number of relevant reviews by years shown here (since 2007; r = 0.650; p = 0.006). However, there is still no clarification of the question of the evidence of the effect of low doses on the lens. This study, consisting of two reports, attempts to fill this gap. Since epidemiological associations to confirm causality should, if possible, meet the criterion of “Biological plausibility”, this Report 1 reviewed the work considered in thematic publications on the cataractogenic effects of the lowest doses of radiation with low LET in experiments in vitro and in animals. The extreme radiosensitivity of the lens cells, exceeding even the parameters of lymphocytes in terms of induction of DNA double-strand breaks, is confirmed in a number of works (an increase in the level of breaks is shown even for a dose of 20 mGy). However, when the dose regularities are transferred to the irradiation of mice and rats in vivo, the conclusions about the effects of low doses are not confirmed. A sample of works over more than 70 years did not reveal such effects. The three exceptions (not included in PubMed paper cited in a single source, a workshop presentation, and an arbitrary textbook mention without citation) do not serve as valid scientific sources. The singularity of these data does not fall under the criterion “Consistency of association”. The smallest threshold doses of radiation for the induction of cataractogenic effects in mice are, according to studies as early as the 1950s, ~114 mGy and ~140 mGy for X-rays. The value of 150 mGy is also called (Shafirkin A.V., Grigoriev Yu.G., 2009). However, one should adhere to the results of more recent studies, according to which, when exposed to radiation in mice, a tendency to opacity in the lens can be observed for a dose of 0.2 Gy, with a statistically significant fixation of the effect for a dose of only 0.4 Gy. Most sources in experiments on rodents report threshold doses in units of gray, with a minimum of 0.5 Gy. Thus, the effects of low doses on the lens opacity were not found in the experiment.

About the authors

A. N. Koterov

State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
Russia, Moscow

L. N. Ushenkova

State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
Russia, Moscow

References

  1. Ashmore J.P., Krewski D., Zielinski J.M. et al. First ana-lysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada // Am. J. Epidemiol. 1998. V. 148. № 6. P. 564–574. https://doi.org/10.1093/oxfordjournals.aje.a009682
  2. UNSCEAR 1972. Report to the General Assembly, with Scientific Annex. V. I. “Level”. Annex C. Doses from occupational exposure. United Nations. New York, 1972. P. 173–186.
  3. ICRP Publication 118. ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP. Ed. by C. H. Clement. Amsterdam–New York: Elsevier, 2012. 325 p.
  4. Hamada N., Sato T. Cataractogenesis following high-LET radiation exposure // Mutat. Res. Rev. Mutat. Res. 2016; 770 (Pt B): 262–291. https://doi.org/10.1016/j.mrrev.2016.08.005
  5. Little M.P., Azizova T.V., Hamada N. Low- and mode-rate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology // Int. J. Radiat. Biol. 2021.V. 97. № 6. P. 782–803. https://doi.org/10.1080/09553002.2021.1876955
  6. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Nuclear and Radiation Studies Board; Committee on Develo-ping a Long-Term Strategy for Low-Dose Radiation Research in the United States. Washington (DC): National Academies Press (US). 2022. 342 p. https://doi.org/10.17226/26434
  7. Dauer L., Blakely E., Brooks A., Hoel D. Epidemiology and mechanistic effects of radiation on the lens of the eye: review and scientific appraisal of the literature. Electric Power Research Institute (EPRI). Technical Report. 3002003162. Final Report. Newburgh: NY, 2014. 142 p.
  8. Ong H.S., Evans J.R., Allan B.D.S. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery // Cochrane Database Syst. Rev. 2014. V. 5. Art. CD009667. https://doi.org/10.1002/14651858.CD009667.pub2
  9. Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence // Int. J. Radiat. Biol. 2017. V. 93. № 10.P. 1024–1034. https://doi.org/10.1080/09553002.2016.1266407
  10. Hamada N., Azizova T.V., Little M.P. An update on effects of ionizing radiation exposure on the eye // Br. J. Radiol. 2020. V. 93. № 1115. Art. 20190829. 26 p. https://doi.org/10.1259/bjr.20190829
  11. Averbeck D., Salomaa S., Bouffler S. et al. Progress in low dose health risk research: Novel effects and new concepts in low dose radiobiology // Mutat. Res. 2018. V. 776. P. 46–69. https://doi.org/10.1016/j.mrrev.2018.04.001
  12. Rehani M.M., Vano E., Ciraj-Bjelac O., Kleiman N.J. Radiation and cataract // Radiat. Prot. Dosimet. 2011. V. 147. № 1–2. P. 300–304. https://doi.org/10.1093/rpd/ncr299
  13. Shore R.E., Neriishi K., Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation do-ses: (not) seeing is believing // Radiat. Res. 2010. V. 174. № 6. P. 889–894. https://doi.org/10.1667/RR1884.1
  14. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Мед. радиология и радиац. безопасность. 2013. Т. 58. № 2. С. 5–21. [Koterov A.N. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing // Medits. Radiologiyia Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2013. V. 58. № 2. P. 5–21.] (In Russ. Engl. abstract.)
  15. Котеров А.Н., Вайнсон А.А. Конъюнктурный подход к понятию о диапазоне малых доз радиации с низкой ЛПЭ в зарубежных обзорных источниках: нет изменений за 18 лет // Мед. радиология и радиац. безопасность. 2022. Т. 67. № 5. С. 33–40. [Koterov A.N., Wainson A.A. Conjunctural approach to the concept of low dose radiation range with low LET in foreign review sources: no changes for 18 years // Me-dits. Radiologiya Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2022. V. 67. № 5. P. 33–40. (In Russ.)] https://doi.org/10.33266/1024-6177-2022-67-5-33-40
  16. Ainsbury E.A., Bouffler S.D., Dorr W., Graw J., Muirhead C.R., Edwards A.A., Cooper J. Radiation cataractogenesis: a review of recent studies // Radiat. Res. 2009. V. 172. № 1. P. 1–9. https://doi.org/10.1667/RR1688.1
  17. Ainsbury E.A., Dalke C., Hamada N., Benadjaoud M.A., Chumak V., Ginjaume M. et al. Radiation-induced lens opacities: epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy // Environ. Int. 2021. V. 146. Art. 106213. 14 p. https://doi.org/10.1016/j.envint.2020.106213
  18. Hamada N., Fujimichi Y., Iwasaki T., Fujii N., Furuhashi M., Kubo E. et al. Emerging issues in radiogenic cataracts and cardiovascular disease // J. Radiat. Res. 2014. V. 55. № 5. P. 831–846. https://doi.org/10.1093/jrr/rru036
  19. Nakashima E., Neriishi K., Minamoto A. A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis // Health Phys. 2006. V. 90. № 2. P. 154–160. https://doi.org/10.1097/01.hp.0000175442.03596.63
  20. Neriishi K., Nakashima E., Minamoto A., Fujiwara S., Akahoshi M., Mishima H.K. et al. Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold // Radiat. Res. 2007. V. 168. № 4. P. 404–408. https://doi.org/10.1667/RR0928.1
  21. Rajabi A.B., Noohi F., Hashemi H. et al. Ionizing radiation-induced cataract in interventional cardiology staff // Res. Cardiovasc. Med. 2015. V. 4. № 1. Art. e25148. 6 p. https://doi.org/10.5812/cardiovascmed.25148
  22. Andreassi M.G., Piccaluga E., Guagliumi G., Del Greco M., Gaita F., Picano E. Occupational health risks in cardiac catheterization laboratory workers // Circ. Cardiovasc. Int. 2016. V. 9. Art. e003273. 9 p. https://doi.org/10.1161/circinterventions.115.003273
  23. Klein B.E., Klein R.E., Moss S.E. Exposure to diagnostic x-rays and incident age-related eye disease // Ophthalmic Epidemiol. 2000. V. 7. № 1. P. 61–65. https://doi.org/10.1076/0928-6586(200003)711-2FT061
  24. Yuan M.-K., Tsai D.-C., Chang S.-C., Yuan M.-C., Chang S.-J., Chen H.-W., Leu H.-B. The risk of cataract associated with repeated head and neck CT studies: a nationwide population-based study // AJR Am. J. Roentgenol. 2013. V. 201. № 3. P. 626–630. https://doi.org/10.2214/AJR.12.9652
  25. Weinstein O., Sade M.Y., Shelef I. et al. The association between exposure to radiation and the incidence of ca-taract // Int. Ophthalmol. 2021. V. 41. № 1. P. 237–242. https://doi.org/10.1007/s10792-020-01572-5
  26. Ainsbury E.A., Barnard S., Bright S. et al. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research // Mutat. Res. Rev. Mutat. Res. 2016. V. 770. Pt. B. P. 238–261. https://doi.org/10.1016/j.mrrev.2016.07.010
  27. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла “Биологическое правдоподобие”. Интеграция данных из различных дисциплин в эпидемиологии и радиационной эпидемиологии // Радиац. биология. Радиоэкология. 2020. Т. 60. № 5. С. 453–480. [Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s criteria “Biological plausibility”. The data integration from different disciplines in Epidemiology and Radiation Epidemiology // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2020. V. 60. № 5. P. 453–480.] (In Russ. Engl. abstract.)https://doi.org/10.31857/S0869803120050069
  28. Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s “Biological Plausibility” criterion: integration of data from various disciplines for epidemiology and radiation epidemiology // Biol. Bull. 2021. V. 48. № 11. P. 1991–2014. https://doi.org/10.1134/S1062359021110054
  29. Котеров А.Н., Вайнсон А.А. Радиационный гормезис и эпидемиология канцерогенеза: “вместе им не сойтись” // Мед. радиология и радиац. безопасность. 2021. Т 66. № 2. С. 36–52. [Koterov A.N., Wainson A.A. Radiation hormesis and epidemiology of carcinogenesis: “Never the twain shall meet” // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2021. V. 66. № 2. P. 36–52.] https://doi.org/. (In Russ. Engl. abstract.)https://doi.org/10.12737/1024-6177-2021-66-2-36-52
  30. Davey Smith G. Data dredging, bias, or confounding. They can all get you into the BMJ and the Friday papers // Brit. Med. J. 2002. V. 325. № 7378. P. 1437–1438. https://doi.org/10.1136/bmj.325.7378.1437
  31. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam– New York: Elsevier, 2007. 329 p.
  32. Bannik K., Rossler U., Faus-Kessler T. et al. Are mouse lens epithelial cells more sensitive to γ-irradiation than lymphocytes? // Radiat. Environ. Biophys. 2013. V. 52. № 2. P. 279–286. https://doi.org/10.1007/s00411-012-0451-8
  33. Markiewicz E., Barnard S., Haines J. et al. Nonlinear ionizing radiationinduced changes in eye lens cell proliferation, cyclin D1 expression and lens shape // Open Biol. 2015. V. 5. № 4. Art. 150011. 14 p. https://doi.org/10.1098/rsob.150011
  34. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П., Самойлов А.С. Вопрос о наступлении “Новой эры” в эпидемиологии малых доз радиации (обзор) // Саратовский науч.-мед. журн. 2016. Т. 12. № 4. С. 654–662. [Koterov A.N., Ushenkova L.N., Biryukov A.P., Samoilov A.S. The question of a “New Era in the low Dose Radiation Epidemiology” approach (review) // Saratovskiy nauchno-meditsinskiy zhurnal (Saratov Journal of Medical Scientific Research). 2016. V. 12. № 4. P. 654–662.] (In Russ. Engl. abstract.)
  35. Upton A.C., Christenberry K.W., Furth J., Hurst G.S., Melville G.S. The relative biological effectiveness of neutrons, X-rays, and gamma rays for the production of lens opacities: observations on mice, rats, guinea-pigs, and rabbits // Radiology. 1956. V. 67. № 5. P. 686–696. https://doi.org/10.1148/67.5.686
  36. Шафиркин А.В., Григорьев Ю.Г. Межпланетные и орбитальные космические полеты. Радиационный риск для астронавтов. Радиобиологическое обоснование. М.: ЗАО “Изд-во “Экономика”, 2009. 640 с. [Shafirkin A.V., Grigoryev Y.G. Interplanetary and Orbital Space Flights: the Radiation Risk to Astronauts (Radiobiological Basis). Moscow: Publishing house “Economica”, 2009. 639 p.] (In Russ. Engl. abstract.)
  37. Москалев Ю.И. Отдаленные последствия воздействия ионизирующих излучений. М.: Медицина, 1991. 464 с. [Moskalev Yu.I. Long-term effects of exposure to ionizing radiation. Moscow: Medicine, 1991. 464 p.] (In Russ.)
  38. Ярмоненко С.П., Вайнсон А.А. Радиобиология человека и животных. М.: Высш. школа, 2004. 549 с. [Yarmonenko S.P., Wainson A.A. Radiobiology of Humans and Animals. Moscow: Visshaya Shkola, 2004. 549 p.] (In Russ.)
  39. Гребенюк А.Н., Стрелова О.Ю., Легеза В.И., Степанова Е.Н. Основы радиобиологии и радиационной медицины: Учебное пособие. СПб.: ООО “Изд-во ФОЛИАНТ”, 2012. 232 с. [Grebenyuk A.N., Strelova O.Yu., Legeza V.I., Stepanova E.N. Fundamentals of Radiobiology and Rradiation Medicine: Textbook. St. Petersburg: “FOLIANT Publishing House” LLC, 2012. 232 p.] (In Russ.)
  40. Hall E.J., Giaccia A.J. Radiobiology for the Radiologists. 8th Ed. Philadelphia etc.: Wolter Kluwer, Lippincott Williams & Wilkins, 2019. 1161 p.
  41. Dalke C., Ne F., Bains S.K., Bright S. et al. Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk // Radiat. Environ. Biophys. 2018. V. 57. № 2. P. 99–113. https://doi.org/10.1007/s00411-017-0728-z
  42. Christenberry K.W., Furth J. Induction of cataracts in mice by slow neutrons and X-rays // Proc. Soc. Exper. BioI. & Med. 1951. V. 77. № 3. P.559–560. https://doi.org/10.3181/00379727-77-18849
  43. Storer J.B., Harris P.S. Incidence of lens opacities in mice exposed to X-rays and thermal neutrons // U.S. Atomic Energy Commission (USAEC). Unclassified Report LA-1455. Los Alamos Scientific Laboratory of the University of California, 1952. 27 p. https://www.osti.gov/servlets/purl/4377516 (address data 07.01.2023; only for non-Russia IP.)
  44. Di Paola M., Bianchi M., Baarli J. Lens opacification in mice exposed to 14-MeV neutrons // Radiat. Res. 1978. V. 73. № 2. P. 340–350. https://doi.org/10.2307/3574825
  45. Герасимов В.И., Ермолаева-Маковская А.П., Рамзаев П.В. Зависимость доза–эффект, основанная на частоте возникновения радиационных катаракт // Мед. радиология. 1986. Т. 31. № 4. С. 52–55. [Gerasimov V.I., Ermolaeva-Makovskaia A.P., Ramzaev P.V. Dose-effect relationship based on frequency of occurrence of radiation cataracts // Medical Radiology; Moscow. 1986. V. 31. № 4. P. 52–55.] (In Russ. Engl. Abstr.)
  46. Worgul B.V., Medvedovsky C., Huang Y. et al. Quantitative assessment of the cataractogenic potential of very low doses of neutrons // Radiat. Res. 1996. V. 145. № 3. P. 343–349. https://doi.org/10.2307/3578991
  47. Worgul B.V., Smilenov L., Brenner D.J. et al. Atm hete-rozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts // Proc. Natl. Acad. Sci. USA. 2002. V. 99. № 15. P. 9836–9839. https://doi.org/10.1073/pnas.162349699
  48. Worgul B.V., Kleiman N.J., David J.D. A positive and a negative bystander effect influences cataract outcome in the irradiated lens // Invest. Ophthalmol. Vis. Sci. 2005a. V. 46. № 13. Suppl. P. 832.
  49. Kleiman N.J. Radiation cataract // Ann. ICRP. 2012. V. 41. № 3–4. P. 80–97. https://doi.org/10.1016/j.icrp.2012.06.018
  50. Worgul B.V., Smilenov L., Brenner D.J. et al. Mice hete-rozygous for the ATM gene are more sensitive to both X-ray and heavy ion exposure than are wildtypes // Adv. Space Res. 2005b. V. 35. № 2. P. 254–259. https://doi.org/10.1016/j.asr.2005.01.030
  51. Kleiman N.J, David J., Elliston C.D. et al. Mrad9 and atm haploinsufficiency enhance spontaneous and X-ray-induced cataractogenesis in mice // Radiat. Res. 2007. V. 168. № 5. P. 567–573. https://doi.org/10.1667/rr1122.1
  52. Kleiman N.J., Smilenov L.B., Brenner D.J., Hall E.J. Low dose radiation cataract // Presented at the DOE/BER Low Dose Radiation Research Investigators Workshop VII, Washington, DC, January 21, 2008.
  53. Kunze S., Cecil A., Prehn C. et al. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice // Int. J. Radiat. Biol. 2021. V. 97. № 4. P. 529–540. https://doi.org/10.1080/09553002.2021.1876951
  54. Worgul B.V., Bito L.Z., Merriam G.R. Jr. Intraocular inflammation produced by X-irradiation of the rabbit eye. Exp. Eye. Res. 1977. V. 25. № 1. P. 53–61. https://doi.org/10.1016/0014-4835(77)90246-9
  55. Worgul B.V., Kundiyev Y.I., Sergiyenko N.M. et al. Cata-racts among Chernobyl clean-up workers: implications regarding permissible eye exposure // Radiat. Res. 2007. V. 167. № 2. P. 233–243. https://doi.org/10.1667/rr0298.1
  56. Hammer G.P., Scheidemann-Wesp U., Samkange-Zeeb F. et al. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies // Radiat. Environ. Biophys.2013. V. 52. № 3. P. 303–319. https://doi.org/10.1007/s00411-013-0477-6
  57. Shore R.E. Radiation and cataract risk: impact of recent epidemiologic studies on ICRP judgments // Mutat. Res. Rev. Mutat. Res. 2016. V. 770. Pt. B. P. 231–237. https://doi.org/10.1016/j.mrrev.2016.06.006
  58. McDonald J.E., Hughes W.F., Jr., Peiffer V.G. Beta radiation cataracts // Arch. Ophth. 1955. V. 53. № 2. P. 248–259. https://doi.org/10.1001/archopht.1955.00930010250012
  59. Schmid E., Schlegel D., Guldbakke S., Kapsch R.-P., Regulla D. RBE of nearly monoenergetic neutrons at energies of 36 keV-14.6 MeV for induction of dicentrics in human lymphocytes // Radiat. Environ. Biophys. 2003. V. 42. № 2. P. 87–94. https://doi.org/10.1007/s00411-003-0200-0
  60. UNSCEAR 2017. Report to the General Assembly, with Scientific Annexes. Annex B. Epidemiological studies of cancer risk due to low-dose-rate radiation from environmental sources. United Nations. New York, 2018. P. 65–176.
  61. International Atomic Energy Agency. Radiation protection and safety of radiation sources: International basic safety standards.; Safety Standards. Series No GSR Part 3. Vienna: IAEA, 2014. 437 p.
  62. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 1: Первые пять критериев Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т. 61. № 3. С. 300–332. [Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 3, Part 1: first five Hill’s criteria: use and limitations // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2021. V. 61. № 3. P. 300–332.] https://doi.org/. (In Russ. Engl. abstr.)https://doi.org/10.31857/S0869803121030085

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (404KB)
3.

Download (642KB)
4.

Download (37KB)
5.

Download (48KB)
6.

Download (44KB)
7.

Download (59KB)

Copyright (c) 2023 А.Н. Котеров, Л.Н. Ушенкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies