Seed Germination Kinetics as an Informative Tool for Assessing the Impact of Ionizing Radiation (on the Example of Arabidopsis Thaliana Aba-mutant Lines)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We have analyzed the kinetics of seed germination of the model plant Arabidopsis thaliana after γ-irradiation at doses of 50, 100 and 150 Gy. The following lines were selected as study objects: abi3-8 with a mutation in the ABI3 gene and with reduced sensitivity to the natural form of abscisic acid and aba3-1 genotype with a mutation in the ABA3 gene and a reduced level of endogenous abscisic acid. Wild type Col-8 was used as a control. To study the effect of γ-radiation on various aspects of seed germination (germinability, germination time and rate, synchrony of germination, etc.), the germination kinetics was assessed using the Germinationmetrics package for the R programming environment. Control and irradiated seeds (radiation source – 60Co) were grown on half-strength Murashige-Skoog medium under controlled conditions. Germination was assessed during the first six days after transfer to the phytotron by the rupture of the endosperm and the appearance of a root. In total, three independent experiments were carried out with three biological replications in each. A more pronounced effect of γ-radiation at a dose of 150 Gy on all studied genotypes was noted. Germination clustering showed that the distribution of the percentage of seed germination by day depends more on the genotype than on the dose of exposure. The best indicators of germination, speed and time interval between germination of 10% to 90% of seeds were noted for non-irradiated seeds of the abi3-8 line. The results obtained and a comparative analysis with previously published data suggest that the assessment of germination kinetics using the Germinationmetrics package for R is a clear and quite informative tool for studying the effect of ionizing radiation and other abiotic factors on various aspects of seed germination.

作者简介

E. Bondarenko

All-Russian Research Institute of Radiology and Agroecology

编辑信件的主要联系方式.
Email: bev_1408@mail.ru
Russia, Obninsk

D. Babina

All-Russian Research Institute of Radiology and Agroecology

Email: bev_1408@mail.ru
Russia, Obninsk

M. Podobed

All-Russian Research Institute of Radiology and Agroecology

Email: bev_1408@mail.ru
Russia, Obninsk

A. Mitsenyk

All-Russian Research Institute of Radiology and Agroecology

Email: bev_1408@mail.ru
Russia, Obninsk

P. Volkova

All-Russian Research Institute of Radiology and Agroecology

Email: bev_1408@mail.ru
Russia, Obninsk

参考

  1. Verma V., Ravindran P., Kumar P. Plant hormone-mediated regulation of stress responses // BMC Plant Biol. 2016. V. 16. Art. 86. https://doi.org/10.1186/s12870-016-0771-y
  2. Finkelstein R., Reeves W., Ariizumi T. et al. Molecular aspects of seed dormancy // Ann. Rev. Plant Biol. 2008. V. 59. № 1. P. 387–415. https://doi.org/10.1146/annurev.arplant.59.032607.092740
  3. Nambara E., Nambara E., McCourt P. et al. A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana // Development. 1995. V. 121. № 3. P. 629–636. https://doi.org/10.1242/dev.121.3.629
  4. Lopez-Molina L., Mongrand S., McLachlin D.T. et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination // Plant J. 2002. V. 32. № 3. P. 317–328. https://doi.org/10.1046/j.1365-313x.2002.01430.x
  5. Watanabe S., Sato M., Sawada Y. et al. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways // Sci. Rep. 2018. V. 8. P. 16592. https://doi.org/10.1038/s41598-018-34862-1
  6. Eckert M., Kaldenhoff R. Light-induced stomatal movement of selected Arabidopsis thaliana mutants // J. Experim. Bot. 2000. V. 51. № 49. P. 1435–1442. https://doi.org/10.1093/jexbot/51.349.1435
  7. Xiong L., Ishitani M., Lee H. et al. The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress- and Osmotic Stress-Responsive Gene Expression // Plant Cell. 2001. V. 13. № 9. P. 2063–2083. https://doi.org/10.2307/3871428
  8. Llorente F., Oliveros J.C., Martinez-Zapater J.M. et al. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele // Planta. 2000. V. 211. № 5. P. 648–55. https://doi.org/10.1007/s004250000340
  9. Barrero J.M., Piqueras P., Gonzalez-Guzmán M. et al. A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development // J. Exp. Bot. 2005. V. 56. № 418. P. 2071–2083. https://doi.org/10.1093/jxb/eri206
  10. Nakashima K., Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development // Plant Cell Rep. 2013. V. 32. № 7. P. 959–970. https://doi.org/10.1007/s00299-013-1418-1
  11. Duarte G.T., Volkova P., Geras’kin S. The response profile to chronic radiation exposure based on the trans-criptome analysis of Scots pine from Chernobyl affec-ted zone // Environ. Pollut. 2019. V. 250. P. 618–626. https://doi.org/10.1016/j.envpol.2019.04.064
  12. Cutler S.R., Rodriguez P.L., Finkelstein R.R. et al. Abscisic acid: emergence of a core signaling network // Ann. Rev. Plant Biol. 2010. V. 61. № 1. P. 651–679. https://doi.org/10.1146/annurev-arplant-042809-112122
  13. Bitarishvili S.V., Volkova P.Y. & Geras’kin S.A. γ-Irradiation of Barley Seeds and Its Effect on the Phytohormonal Status of Seedlings // Russ. J. Plant Physiol. 2018. V. 65. P. 446–454. https://doi.org/10.1134/S1021443718020024
  14. Aravind J., Vimala D.S., Radhamani J. et al. Germinationmetrics: Seed Germination Indices and Curve Fitting. R package version 0.1.3. 2019. Available at: https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics. Accessed May 25, 2021.
  15. R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/. Accessed May 25, 2021.
  16. Nambara E., Suzuki M., Abrams S. et al. A screen for genes that function in abscisic acid signalling in Arabidopsis thaliana // Genetics. 2002. V. 161. № 3. P. 1247–1255. https://doi.org/10.1093/genetics/161.3.1247
  17. Leon-Kloosterziel K.M., Gil M.A., Ruijs G.J. et al. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci // Plant J. 1996. V. 10. № 4. P. 655–661. https://doi.org/10.1046/j.1365-313X.1996.10040655.x
  18. El-Kassaby Y.A., Moss I., Kolotelo D. et al. Seed germination: Mathematical representation and parameters extraction // Forest Sci. 2008. V. 54. P. 220–227. https://doi.org/10.1093/forestscience/54.2.220
  19. ГОСТ 12038-84. Межгосударственный стандарт. Семена сельскохозяйственных культур. Методы определения всхожести (с Изменениями N 1, 2). [GOST 12038-84. Agricultural seeds. Methods for determination of germination (In Russ.]
  20. ГОСТ 20290-74. Семена сельскохозяйственных культур. Определение посевных качеств семян. Термины и определения. [GOST 20290-74. Seeds of crops. Determination of seed sowing quality. Terms and definitions (In Russ.)]
  21. Czabator F.J. Germination value: An index combining speed and completeness of pine seed germination // Forest Sci. 1962. V. 8. P. 386–396.
  22. Thomson A., El-Kassaby Y. Interpretation of seed-germination parameters // New Forests. 1993. V. 7. P. 123–132. https://doi.org/10.1007/BF00034195
  23. Nambara E., Naito S., McCourt P. A mutant of Arabidopsis which is defective in seed development and sto-rage protein accumulation is a new abi3 allele // Plant J. 1992. V. 2. № 4. P. 435–441. https://doi.org/10.1111/j.1365-313X.1992.00435.x
  24. Park J., Lee N., Kim W. et al. ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds // Plant Cell. 2011. V. 23. № 4. P. 1404–1415. https://doi.org/10.1105/tpc.110.080721
  25. Babina D., Podobed M., Bondarenko E. et al. Seed Gamma Irradiation of Arabidopsis thaliana ABA-Mutant Lines Alters Germination and Does Not Inhibit the Photosynthetic Efficiency of Juvenile Plants // Dose-Response. 2020. P. 1–13. https://doi.org/10.1177/1559325820979249
  26. Chan Z. Expression profiling of ABA pathway trans-cripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis // Genomics. 2012. V. 100. P. 110–115. https://doi.org/10.1016/j.ygeno.2012.06.004
  27. Plessis A., Cournol R., Effroy D. et al. New ABA-hypersensitive Arabidopsis mutants are affected in loci mediating responses to water deficit and Dickeya dadantii infection // PLoS One. 2011. V. 6. № 5. P. e20243. https://doi.org/10.1371/journal.pone.0020243
  28. Schwartz S.H., Leon-Kloosterziel K.M., Koornneef M. et al. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana // Plant Physiol. 1997. V. 114. P. 161–166.
  29. Kader M. A comparison of seed germination calculation formulae and the associated interpretation of resulting data // J. & Proc. Royal Society of New South Wales. 2005. V. 138. P. 65–75.
  30. Talská R., Machalová J., Smýkal P., Hron K. A compa-rison of seed germination coefficients using functional regression // Appl Plant Sci. 2020. V. 8. № 8. P. e11366. https://doi.org/10.1002/aps3.11366
  31. Szklarczyk D., Gable A.L., Lyon D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets // Nucl. Acids Res. 2019. V. 8. № 47 (D1). P. D607–D613. https://doi.org/10.1093/nar/gky1131

补充文件

附件文件
动作
1. JATS XML
2.

下载 (52KB)
3.

下载 (893KB)
4.

下载 (566KB)
5.

下载 (223KB)
6.

下载 (759KB)

版权所有 © Е.В. Бондаренко, Д.Д. Бабина, М.Ю. Подобед, А.С. Миценык, П.Ю. Волкова, 2023

##common.cookie##