Stimulation of Mesenchymal Stem Cells Proliferation from the Femur of Wistar Rats by Nanosecond Microwave Radiation: Dependence on the Number of Pulses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of nanosecond repetitively pulsed microwave radiation (RPM, 50–4000 pulses, pulse repetition rate of 13 Hz, peak power flux density of 140 W/cm2, carrier frequency of 10 GHz) on the stimulation of me-senchymal stem cells (MSC) proliferation was studied. The effect of exposure was assessed by the change in the number of cells in the culture after a single irradiation with a different number of pulses. The most pronounced effect exerted by the impact with 100 and 50 pulses, and the effect is realized with a maximum speed after 24 hours.

About the authors

А. А. Gostyuhina

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences; Federal Scientific and Clinical Center of Medical Rehabilitation and
Balneology of the Federal Medical and Biological Agency of Russia; National Research Tomsk State University

Email: kereya21@mail.ru
Russia, Tomsk; Russia, Moscow; Russia, Tomsk

М. А. Bolshakov

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University

Email: kereya21@mail.ru
Russia, Tomsk; Russia, Tomsk

А. V. Samoylova

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University; Siberian State Medical University of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: kereya21@mail.ru
Russia, Tomsk; Russia, Tomsk; Russia, Tomsk

O. S. Doroshenko

Federal Scientific and Clinical Center of Medical Rehabilitation and
Balneology of the Federal Medical and Biological Agency of Russia; National Research Tomsk State University

Email: kereya21@mail.ru
Russia, Moscow; Russia, Tomsk

M. V. Svetlik

National Research Tomsk State University; Siberian State Medical University of the Ministry of Health of the Russian Federation

Email: kereya21@mail.ru
Russia, Tomsk; Russia, Tomsk

О. P. Kutenkov

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences

Email: kereya21@mail.ru
Russia, Tomsk

K. V. Zaitsev

Federal Scientific and Clinical Center of Medical Rehabilitation and
Balneology of the Federal Medical and Biological Agency of Russia

Email: kereya21@mail.ru
Russia, Moscow

V. V. Rostov

Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences

Email: kereya21@mail.ru
Russia, Tomsk

References

  1. Burdon T.J., Paul A., Noiseux N. et al. Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential // Bone Marrow Res. 2011. V. 2011. P. 207326. https://doi.org/10.1155/2011/207326
  2. Marfia G., Navone S.E., Di Vito C. et al. Mesenchymal stem cells: potential for therapy and treatment of chro-nic non-healing skin wounds // Organogenesis. 2015. V. 11. № 4. P. 183–206. https://doi.org/10.1080/15476278.2015.1126018
  3. Foubert P., Gonzalez A.D., Teodosescu S. et al. Adipose-derived regenerative cell therapy for burn wound hea-ling: a comparison of two delivery methods // Adv Wound. Care. 2016. V. 5. № 7. P. 288–298. https://doi.org/10.1089/wound.2015.0672
  4. Fathke C., Wilson L., Hutter J. et al. Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair // Stem. Cells. 2004. V. 22. № 5. P. 812–822. https://doi.org/10.1634/stemcells.22-5-812
  5. Chino T., Tamai K., Yamazaki T. et al. Bone marrow cell transfer into fetal circulation can ameliorate genetic skin diseases by providing fibroblasts to the skin and inducing immune tolerance // Am. J. Pathol. 2008. V. 173. № 3. P. 803–814. https://doi.org/10.2353/ajpath.2008.070977
  6. Sasaki M., Abe R., Fujita Y. et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type // J. Immunol. 2008. V. 180. № 4. P. 2581–2587. https://doi.org/10.4049/jimmunol.180.4.2581
  7. Керея А.В., Большаков М.А., Ходанович М.Ю. и др. Оценка реакции мозга мышей на воздействие наносекундных микроволновых импульсов по экспрессии белка c-fos // Радиац. биология. Радиоэкология. 2017. Т. 57. № 2. С. 179–184. [Kereya A.V., Bolshakov M.A., Khodanovich M.Yu. et al. Evaluation of mice brain reactions after nanosecond microwave pul-ses using c-fos expression // Radiacionnaya Biologiya. Radioekologiya. 2017. V. 57. № 2. P. 179–184. (In Russ.)]. https://doi.org/10.7868/S0869803117020072
  8. Керея А.В., Большаков М.А., Жаркова Л.П. и др. Поведенческая активность и уровень кортикостерона в сыворотке крови мышей в динамике семидневного воздействия наносекундным импульсным микроволновым излучением // Радиац. биология. Радиоэкология. 2021. Т. 61. № 2. С. 168–174. [Sa-moylova А.V., Bolshakov М.А., Zharkova L.P. et al. Behavioral activity and corticosterone level in the mice blood serum during the 7-day exposure to nanosecond microwave pulses // Radiacionnaya Biologiya. Radio-ekologiya. 2021. V. 61. № 2. P. 168–174. (In Russ.)]. https://doi.org/10.31857/S0869803121020107
  9. Керея А.В., Большаков М.А., Жаркова Л.П. и др. Эффект воздействия наносекундного импульсно-периодического микроволнового излучения на эпидидимальную жировую ткань мышей // Радиац. биология. Радиоэкология. 2014. Т. 54. № 6. С. 606–612. [Kereya A.V., Bol’shakov M.A., Zharkova L.P. et al. Effekt vozdejstviya nanosekundnogo impul’sno-periodicheskogo mikrovolnovogo izlucheniya na epididimal’nuyu zhirovuyu tkan' myshej // Radiacionnaya Biologiya. Radioekologiya. 2014. V. 54. № 6. P. 606–612. (In Russ.)]. https://doi.org/10.7868/S0869803114060071
  10. Керея А.В., Гостюхина А.А., Межерицкий С.А. и др. Пролиферативная активность клеток костного мозга крыс после облучения наносекундным импульсно-периодическим микроволновым излучением // Совр. вопp. биомедицины. 2019. Т. 3. № 2 (7). С. 6–22. [Kereya A.V., Gostyukhina A.A., Mezhe-ritsky S.A. et al. Proliferative activity of bone marrow mononuclear cells of rats after irradiation by nanose-cond microwave pulses // Sovremennye voprosy biomediciny. 2019. V. 3. № 2 (7). P. 6–22. (In Russ.)].
  11. Самойлова А.В., Гостюхина А.А., Большаков М.А. и др. Возможности управления пролиферацией гемопоэтических стволовых клеток посредством наносекундных импульсных микроволн // Совр. Вопр. биомедицины. 2021. Т. 5. № 1 (14). С. 15. [Samojlova A.V., Gostyukhina A.A., Bol’shakov M.A. et al. Possibilities to control the proliferation of hematopoietic stem cells after irradiation by nanosecond microwave pulses // Sovremennye voprosy biomediciny. 2021. V. 5. № 1 (14). P. 15. (In Russ.)]. https://doi.org/10.51871/2588-0500_2021_05_01_15
  12. Князева И.Р., Большаков М.А., Кутенков О.П. и др. Mitochondrial respiration after exposure to nanose-cond microwave pulses: dependence on the number of pulses // Изв. высш. учеб. заведений. Физика. 2016. Т. 59. № 9–2. С. 70–73. [Knyazeva I.R., Bolshakov M.A., Kutenkov O.P. Mitochondrial respiration after exposure to nanosecond microwave pulses: dependence on the number of pulses // Russian Physics Journal. 2016. V. 59. № 9–2. P. 70–73 (In Russ.)]
  13. Жаркова Л.П., Князева И.Р., Большаков М.А. и др. Ингибирование дыхания митохондрий после воздействия наносекундным рентгеновским излечением с разным количеством импульсов // Междунар. науч.-практ. конф. “Современные парадигмы научных воззрений”. Санкт-Петербург, 2016. С. 6–8. [Zharkova L.P., Knyazeva I.R., Bolshakov M.A. et al. Ingibirovanie dyhaniya mitohondrij posle vozdejstviya nanosekundnym rentgenovskim izlecheniem s raznym kolichestvom impul’sov // Mezhdunar. nauchno-prakt. konf. “Sovremennye paradigmy nauchnyh voz-zrenij”. (Conf. proc.) Sankt-Peterburg, 2016. P. 6–8. (In Russ.)]
  14. Zharkova L.P., Romanchenko I.V., Bolshakov M.A., Rostov V.V. Effect of nanosecond RF pulses on mitochondrial membranes // Russian Physics Journal. 2017. V. 60. № 8. P. 1314–1318. https://doi.org/10.1007/s11182-017-1214-4
  15. Шахов В.П. и др. Введение в методы культуры клеток, биоинженерии органов и тканей. Томск: STT, 2004. 386 с. [Shahov V.P. i dr. Vvedenie v metody kul’tury kletok, bioinzhenerii organov i tkanej. Tomsk: STT, 2004. 386 s. (In Russ.)]
  16. РФ ГОСТ Р-53434-2009 Принципы надлежащей лабораторной практики. М.: Стандартинформ, 2010. (In Russ.)]
  17. Klimov A.I., Eltchaninov A.A., Konobeeva E.Yu. Measurements of Parameters of X-Band High-Power Microwave Pulses // Russian Physics Journal. 2006. V. 49. № 11. P. 431–434.
  18. Bolshakov M.A., Alekseev S.I. Bursting Responses of Lymnaea Neurons to Microwave Radiation // Bioelectromagnetics. 1992. V. 13. № 3. P. 119–129. https://doi.org/10.1002/bem.2250130206
  19. Медик В.А. Статистика в медицине и биологии. М.: Медицина, 2000. 412 с. [Medic V.A. Statistics in me-dicine and biology. M.: Medicine, 2000. 412 p. (In Russ.)]
  20. Watt F.M., Hogan B.L.M. Out of Eden: Stem Cells and Their Niches // Stem. Cell Res. Ethics. 2000. V. 287. P. 1427–1430. https://doi.org/10.1126/science.287.5457.1427
  21. Morrison S.J., Spradling A.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life // Cell. 2008. V. 132. P. 598–611. https://doi.org/10.1016/j.cell.2008.01.038
  22. Silva-Vargas V., Lo Celso C., Giangreco A. et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells // Dev Cell. 2005. V. 9. № 1. P. 121–31. https://doi.org/10.1016/j.devcel.2005.04.013
  23. Москвин С.В., Ключников Д.Ю., Антипов Е.В и др. Воздействие непрерывного низкоинтенсивного лазерного излучения красного (635 нм) и зеленого (525 нм) спектров на мезенхимальные стволовые клетки человека in vitro: обзор литературы и собственные исследования // Вопр. курортологии, физиотерапии и лечебной физической культуры. 2016. № 2. С. 32–42. [Moskvin S.V., Klyuchnikov D.Yu., Antipov E.V. et al. The influence of continuous low-intensity laser radiation of the red (635 nm) and red (525 nm) spectra on the human mesenchymal stem cells in vitro: a review of the literature and the results of original investigations // Voprosy kurortologii, fiziote-rapii i lechebnoj fizicheskoj kul’tury. 2016. № 2. P. 32–42. (In Russ.)] https://doi.org/10.17116/kurort2016232-42
  24. Adey W.R. Biological effects of electromagnetic fields // J. Cell. Biochem. 1993. V. 51. № 4. P. 410–416.
  25. Chen Y., Bai B., Zhang S. et al. Effects of parathyroid hormone on calcium ions in rat bone marrow mesenchymal stem cells // BioMed. Res. Int. 2014. https://doi.org/10.1155/2014/258409
  26. Kim T.J., Joo C., Seong J. et al. Distinct mechanisms regulating mechanical force-induced Ca(2+) signals at the plasma membrane and the ER in human MSCs // eLife. 2015. https://doi.org/10.7554/eLife.04876
  27. Samoylova A., Gostyukhina A., Rostov V. et al. Dynamics of burn wound healing in rats irradiated by nanosecond microwave pulses // Biomed. J. Sci. Techn. Res. 2020. V. 32. № 2. P. 24791–24792. https://doi.org/10.26717/BJSTR.2020.32.005216

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (530KB)

Copyright (c) 2023 А.А. Гостюхина, М.А. Большаков, А.В. Самойлова, О.С. Дорошенко, М. В. Светлик, О.П. Кутенков, К.В. Зайцев, В.В. Ростов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies