Excess Relative Risk of Mortality from Diseases of the Circulation System after Irradiation. Report 1. Overview of Reviews and Meta-analysis Declared Effects of Low Doses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A review of two reports is devoted to the problem of the significance of excess relative risks (ERR) per 1 Gy/Sv for mortality from diseases of the circulatory system for various exposed groups from the standpoint of epidemiology and in terms of the effects of low doses of radiation. Report 1 provides an overview of reviews and meta-analyses, together with key studies, on this topic. In most sources, 2005–2021 (publications by M.P. Little with co-workers, and others) reveals an ideological bias towards the effects of low doses of radiation (noted in the titles or summaries of almost all papers), and often there was a lack of understanding about the upper limit of this range accepted by international organizations for low LET radiation (up to 0.1 Gy according to UNSCEAR, ICRP, BEIR, etc.). In selected M.P. Little and co-authors sources for reviews and meta-analyses observed both absurd ERR values per 1 Gy and incorrect recalculations of the risk estimated in the originals at 0.1 Gy. Examples of the incorrectness of such estimations are presented, since ERR per 1 Gy calculated for ranges of lower doses may differ from those for high dose ranges by many times, and this is a systemic phenomenon, despite all the declarations of a linear non-threshold concept. Selection of sources for meta-analyses used by M.P. Little and other authors (2010–2020) violates the principles of homogeneity (groups with radiotherapy (including children with tinea capitis) are combined with miners, liquidators of the Chernobyl accident, etc.), representing an illustration of a meme of critics of meta-analytical approaches (“combination of apples and oranges”). The values of ERR per 1 Gy obtained as a result of meta-analyses for diseases of the circulatory system in general and for their individual types according to epidemiological risk scales (R.R. Monson scale, 1980; 1990) are either insignificant (ERR = 0–0.2), or, rarely, located on the border of weak associations (ERR = 0.2–0.5). An analysis of data from reviews and meta-analyses on the topic did not reveal sources that investigated effects limited to low dose ranges. In almost all cases, with some exceptions (miners with radon exposure, cohorts with absurd risks, etc.), the upper limit of the range for groups in the samples was either medium (0.1–1 Gy) or high (>1 Gy). ) doses. An analysis of almost all publications on the topic of Mayak employees (T.V. Azizova with co-workers; 2010–2018; 31 sources) showed a lack of risk studies for groups with low doses of external exposure (up to 0.1 Gy), with the exception of works from 2014 and 2018, in which either reverse or weak effects were established in the absence of dose dependence. Thus, no samples in reviews and meta-analyses, as well as data for Mayak PA, provide material on the correspon-ding effect of low doses, despite the prevailing general idea of its “proof”. It was concluded that one should adhere to the statement of international organizations (USCEAR, ICRP, NCRP, BEIR, etc.) that the threshold for increasing mortality from diseases of the circulatory system is not less than 0.5 Gy, and then raise the issue of their radiation attribution for low doses impractical.

About the authors

A. N. Koterov

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Author for correspondence.
Email: govorilga@inbox.ru
Russia, Moscow

L. N. Ushenkova

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
Russia, Moscow

A. A. Wainson

N.N. Blokhin Russian Cancer Research Center

Email: govorilga@inbox.ru
Russia, Moscow

I. G. Dibirgadzhiev

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
Russia, Moscow

A. P. Biryukov

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: govorilga@inbox.ru
Russia, Moscow

References

  1. UNSCEAR 2019. Report to the General Assembly, with Scientific Annexes. Annex A. Evaluation of selec-ted health effects and inference of risk due to radiation exposure. New York, 2020. P. 21–192.
  2. Baselet B., Ramadan R.A., Benotmane A.M. et al. Selected endothelial responses after ionizing radiation exposure // Endothelial Dysfunction – Old Concepts and New Challenges / Ed. H. Lenasi. IntechOpen, 2018. P. 365–390. https://doi.org/10.5772/intechopen.72386
  3. Wakeford R. Does low-level exposure to ionizing radiation increase the risk of cardiovascular disease? // Hypertension. 2019. V. 73. № 6. P. 1170–1171. https://doi.org/10.1161/HYPERTENSIONAHA.119.11892
  4. Bernstein J., Dauer L., Dauer Z. et al. Cardiovascular risk from low dose radiation exposure. Review and scientific appraisal of the literature. 3002018408. Technical Report. Palo Alto (CA): Electric Power Research Institute (EPRI). Final Report, 2020. 144 p. https://www.epri.com/research/products/000000003002018408 (address data 2022/01/21).
  5. Little M.P., Azizova T.V., Hamada N. Low- and mode-rate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology // Int. J. Radiat. Biol. 2021. V. 97. № 6. P. 782–803. https://doi.org/10.1080/09553002.2021.1876955
  6. Tapio S., Little M.P., Kaiser J.C. et al. Ionizing radiation-induced circulatory and metabolic diseases // Environ. Int. 2021. V. 146. Art. 106235. 16 p. https://doi.org/10.1016/j.envint.2020.106235
  7. ICRP Publication 118. ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP / Ed. C.H. Clement. Amsterdam – New York: Elsevier, 2012. 325 p.
  8. Hendry J.H. Threshold doses and circulatory disease risks // Ann. ICRP. 2015. V. 44. № 1. Suppl. P. 69–75. https://doi.org/.1177/0146645314560688
  9. Schollnberger H., Eidemuller M., Cullings H.M. et al. Dose-responses for mortality from cerebrovascular and heart diseases in atomic bomb survivors: 1950–2003 // Radiat. Environ. Biophys. 2018. V. 57. № 1. P. 17–29. https://doi.org/10.1007/s00411-017-0722-5
  10. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex B Epidemiological evaluation of cardiovascular disease and other non-cancer diseases following radiation exposure. United Nations. New York, 2006. P. 325–383.
  11. UNSCEAR 2010. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation 2010. Fifty-seventh session, includes Scientific Report: summary of low-dose radiation effects on health. New York: United Nations, 2011. 106 p.
  12. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Мед. радиология и радиац. безопасность. 2013. Т. 58. № 2. С. 5–21. [Koterov A.N. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing. Medits. Radiologiia Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2013. V. 58. № 2. P. 5–21. (In Russ. Engl. abstr.)]
  13. NCRP Report No 171. Uncertainties in the estimation of radiation risks and probability of disease causation. Bethesda, MD: National Council on Radiation Protection and Measurements, 2012. 418 p.
  14. NCRP Commentary No 27. Implications of recent epi-demiologic studies for the linear-nonthreshold model and radiation protection. Bethesda, MD: National Council on Radiation Protection and Measurements, 2018.
  15. EPA Radiogenic cancer risk models and projections for the U.S. population (Blue Book). EPA-HQ-OAR-2011-0436; FRL-9313-4. Federal Register. 2011. V. 76. № 104. P. 31329–31330. Washington: Environmental Protection Agency, D.C., 2011.
  16. McGale P., Darby S.C. Low doses of ionizing radiation and circulatory diseases: a systematic review of the published epidemiological evidence // Radiat. Res. 2005. V. 163. № 3. P. 247–257. https://doi.org/10.1667/rr3314
  17. McGale P., Darby S.C. Commentary: a dose-response relationship for radiation-induced heart disease-current issues and future prospects // Int. J. Epidemiol. 2008. V. 37. № 3. P. 518–523. https://doi.org/10.1093/ije/dyn067
  18. McMillan T.J., Bennett M.R., Bridges B.A. et al. Circulatory disease risk, subgroup on circulatory disease risk of the Advisory Group on Ionising Radiation // AGIR-2010. Circulatory disease risk. Report of the independent Advisory Group on Ionising Radiation. Chilton, Doc HPA, RCE-16. 2010. 116 p.
  19. Little M.P., Tawn E.J., Tzoulaki I. et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms // Radiat. Res. 2008. V. 169. № 1. P. 99–109. https://doi.org/10.1667/RR1070.1
  20. Little M.P., Tawn E.J., Tzoulaki I. et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms // Radiat. Environ. Biophys. 2010. V. 49. № 2. P. 139–153. https://doi.org/10.1007/s00411-009-0250-z
  21. Little M.P., Azizova T.V., Bazyka D. et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks // Environ. Health Perspect. 2012. V. 120. № 11. P. 1503–1511. https://doi.org/10.1289/ehp.1204982
  22. Little M.P. A review of non-cancer effects, especially circulatory and ocular diseases // Radiat. Environ. Biophys. 2013. V. 52. № 4. 435–449. https://doi.org/10.1007/s00411-013-0484-7
  23. Little M.P., Lipshultz S.E. Low dose radiation and circulatory diseases: a brief narrative review // Cardio-Oncology. 2015. V. 1. Art. 4. 10 p. https://doi.org/10.1186/s40959-015-0007-6
  24. Little M.P. Radiation and circulatory disease // Mutat. Res. 2016. V. 770. Pt B. P. 299–318. https://doi.org/10.1016/j.mrrev.2016.07.008
  25. Kreuzer M., Auvinen A., Cardis E. et al. Low-dose ioni-sing radiation and cardiovascular diseases – Strategies for molecular epidemiological studies in Europe // Mutat. Res. Rev. Mutat. Res. 2015. V. 764. P. 90–100. https://doi.org/10.1016/j.mrrev.2015.03.002
  26. . Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death: Based on the Recommendations of the Ninth Revision Conference, 1975, and Adopted by the Twenty-ninth World Health Assembly, 1975 revision. V.I. World Health Organization: Geneva, 1977. 353 p. [Translated in Russian: Руководство по международной статистической классификации болезней, травм и причин смерти. Классификация основана на рекомендациях Конференции по Девятому пересмотру (1975 г.) и принята Двадцать девятой Всемирной ассамблеей здравоохранения. Т. 1. Женева, ВОЗ. М.: Медицина, 1980. 758 с.]
  27. Classification of Diseases, Functioning, and Disability. CDC. Center for Disease Control and Prevention. NCHS. National Center for Health Statistics. World Health Organization (WHO), 2021. https://www.cdc.gov/nchs/icd/index.htm (address data 2022/01/12)
  28. Azizova T.V., Grigoryeva E.S., Haylock R.G. et al. Ischae-mic heart disease incidence and mortality in an exten-ded cohort of Mayak workers first employed in 1948–1982 // Br. J. Radiol. 2015. V. 88. № 1054. Art. 20150169. 24 p. https://doi.org/10.1259/bjr.20150169
  29. Azizova T.V., Muirhead C.R., Moseeva M.B. et al. Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948–1972 // Radiat. Environ. Biophys. 2011. V. 50. № 4. P. 539–552. https://doi.org/10.1007/s00411-011-0377-6
  30. Azizova T., Briks K., Bannikova M., Grigoryeva E. Hypertension Incidence Risk in a Cohort of Russian Workers Exposed to Radiation at the Mayak Production Association Over Prolonged Periods // Hypertension. 2019. V. 73. № 6. P. 1174–1184. https://doi.org/10.1161/HYPERTENSIONAHA.118.11719
  31. Азизова Т.В., Григорьева Е.С., Хантер Н. и др. Риск смерти от болезней системы кровообращения в когорте работников, подвергшихся хроническому облучению // Тер. архив. 2017. Т. 89. № 1. С. 18–27. [Azizova T.V., Grigoryeva E.S., Hunter N et al. Mortality from circulatory diseases in a cohort of patients exposed to chronic radiation // Ter. Arkh. 2017. V. 89. № 1. P. 18–27. (In Russ. Engl. abst.)] https://doi.org/10.17116/terarkh201789118-27
  32. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of employees at the Chapelcross plant of British Nuclear Fuels plc, 1955–95 // J. Radiol. Prot. 2001. V. 21. № 3. P. 221–250. https://doi.org/10.1088/0952-4746/21/3/302
  33. Omar R.Z., Barber J.A., Smith P.G. Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels // Br. J. Cancer. 1999. V. 79. № 7–8. P. 1288–1301. https://doi.org/10.1038/sj.bjc.6690207
  34. Matanoski G.M. Health Effects of Low-Level Radiation in Shipyard Workers. Final Report Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Epidemiology. United States: N. p., DOE Report no. DOE/EV/10095.T2, DOE Contract No. DE-ACO2-79EV10095, National Technical Information Service, Springfield, VA, 1991. 437 p. https://doi.org/10.2172/10103020. https://www.osti.gov/ servlets/purl/10103020 (address data 2022/01/12)
  35. Muirhead C.R., O’Hagan J.A., Haylock R.G.E. et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Re-gistry for Radiation Workers // Br. J. Cancer. 2009. V. 100. № 1. P. 206–212. https://doi.org/10.1038/sj.bjc.6604825
  36. Muirhead C.R., O”Hagan J.A., Haylock R.G.E. et al. Third analysis of the National Registry for Radiation Workers: occupational rxposure to ionizing radiation in relation to mortality and cancer incidence. Health Protection Agency. Centre for Radiation, Chemical and Environmental Hazards. Radiation Protection Division. HPA-RPD-062. Chilton, Didcot, Oxfordshire OX11 0RQ. 2009. 150 p. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/340090/HPA-RPD-062_for_website.pdf (address data 2022/01/12)
  37. Howe G.R., Zablotska L.B., Fix J.J. et al. Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ioni-zing radiation // Radiat. Res. 2004. V. 162. № 5. P. 517–526. https://doi.org/10.1667/rr3258
  38. McGeoghegan D., Binks K., Gillies M. et al. The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005 // Int. J. Epidemiol. 2008. V. 37. № 3. P. 506–518. https://doi.org/10.1093/ije/dyn018
  39. Cardis E., Gilbert E.S., Carpenter L. et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries // Radiat. Res. 1995. V. 142. № 2. P. 117–132. https://doi.org/10.2307/3579020
  40. Vrijheid M., Cardis E., Ashmore P. et al. Mortality from diseases other than cancer following low doses of ioni-zing radiation: results from the 15-country study of nuclear industry workers // Int. J. Epidemiol. 2007. V. 36. P. 1126–1135. https://doi.org/10.1093/ije/dym138
  41. Metz-Flamant C., Laurent O., Samson E. et al. Mortality associated with chronic external radiation exposure in the French combined cohort of nuclear workers // Occup. Environ. Med. 2013. V. 70. № 9. P. 630–638. https://doi.org/10.1136/oemed-2012-101149
  42. Gillies M., Richardson D.B., Cardis E. et al. Mortality from circulatory diseases and other non-cancer outcomes among nuclear workers in France, the United Kingdom and the United States (INWORKS) // Radiat. Res. 2017. V. 188. № 3. P. 276–290. https://doi.org/10.1667/RR14608.1
  43. Leuraud K., Fournier L., Samson E. et al. Mortality in the French cohort of nuclear workers // Radioprot. 2017. V. 52. № 3. P. 199–210. https://doi.org/10.1051/radiopro/2017015
  44. Azizova T.V., Batistatou E., Grigorieva E.S. et al. An assessment of radiation-associated risks of mortality from circulatory disease in the cohorts of Mayak and Sellafield nuclear workers // Radiat. Res. 2018. V. 189. № 4. P. 371–388. https://doi.org/10.1667/RR14468.1
  45. National Research Council (NRC), Division on Earth and Life Studies, Board on Radiation Effects Research, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII. Phase 2. National Academies Press, 2006. 422 p.
  46. Azizova T.V., Muirhead C.R., Druzhinina M.B. et al. Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958 // Radiat. Res. 2010. V. 174. № 2. P. 155–168. https://doi.org/10.1667/RR1789.1
  47. Азизова Т.В., Мосеева М.Б., Григорьева Е.С. и др. Риск смертности от сердечно-сосудистых заболеваний у работников, подвергшихся профессиональному облучению // Радиац. биология. Радиоэкология. 2012. Т. 52. № 2. С. 158–166. [Azizova T.V., Moseeva M.B., Grigoryeva E.S. et al. Mortality risk of cardiovascular diseases for opccupationally exposed workers // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2012. V. 52. № 2. P. 158–166. (In Russ. Engl. abstr.)]
  48. Zablotska L.B., Lane R.S., Frost S.E. Mortality (1950–1999) and cancer incidence (1969–1999) of workers in the Port Hope cohort study exposed to a unique combination of radium, uranium and γ-ray doses // BMJ Open. 2013. V. 3. № 2. Article e002159. 10 p. https://doi.org/10.1136/bmjopen-2012-002159
  49. Zablotska L.B. Mortality risks in the pooled analyses of the Canadian and German uranium processing worker. Canadian Nuclear Safety Commission contract 87055-13-0577. Final Report. R587.1. July 31, 2015. 43 p. https://www.nuclearsafety.gc.ca/eng/pdfs/research-project-R587-1.pdf (address data 2022/01/12)
  50. Zablotska L.B., Fenske N., Schnelzer M. et al. Analysis of mortality in a pooled cohort of Canadian and German uranium processing workers with no mining experience // Int. Arch. Occup. Environ. Health. 2018. V. 91. № 1. P. 91–103. https://doi.org/10.1007/s00420-017-1260-9
  51. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Краткий обзор мировых исследований лучевых и нелучевых эффектов у работников ядерной индустрии // Медико-биологические проблемы жизнедеятельности (Гомель). 2020. № 1. С. 17–31. [Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Brief review of world researches of radiation and non-radiation effects in nuclear industry workers // Medical and Biological Problems of Life Activity (Gomel). 2020. № 1. С. 17–31. (In Russ. Engl. abstr.)]
  52. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла “Эксперимент”. Контрафактический подход в дисциплинах нерадиационного и радиационного профиля // Радиац. биология. Радиоэкология. 2020. Т. 60. № 6. С. 565–594. [Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill”s criteria “Experiment”. The counterfactual approach in non-radiation and radiation sciences // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2020. V. 60. № 6. P. 565–594. (In Russ. Engl. abstr.)] https://doi.org/10.31857/S0869803120060193
  53. Котеров А.Н., Вайнсон А.А. Биологические и медицинские эффекты излучения с низкой ЛПЭ для различных диапазонов доз. Мед. радиология и радиац. безопасность. 2015. Т. 60. № 3. С. 5–31. [Koterov A.N., Wainson A.A. Health effects of low Let radiation for various dose ranges // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2015. V. 60. № 3. P. 5–31. (In Russ. Engl. abst.)]
  54. Info: Paul McGale, Medical Statistian. Oxford Population Health, 2022. https://www.ndph.ox.ac.uk/team/paul-mcgale (address data 2022/01/21).
  55. Info: Sarah Darby. PhD. Professor of Medical Statistics in the University of Oxford. Oxford Population Health. 2022. https://www.ndph.ox.ac.uk/team/sarah-darby.
  56. Darby S.C., Cutter D.J., Boerma M. et al. Radiation-related heart disease: current knowledge and future prospects // Int. J. Radiat. Oncol. Biol. Phys. 2010. V. 76. № 3. P. 656–665. https://doi.org/10.1016/j.ijrobp.2009.09.064
  57. Info: Mark Little, D.Phil. Division of Cancer Epidemiology and Genetics at the National Cancer Institute. USA.gov. https://dceg.cancer.gov/about/staff-directory/little-mark (address data 2022/01/18).
  58. Handbook of Epidemiology / Eds W. Ahrens, I. Pigeot. 2nd Ed. New York; Heidelberg; Dordrecht; London: Springer, 2014. 2498 p.
  59. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd, 2009. 421 p.
  60. Carpenter C.J. Meta-analyzing Apples and Oranges: how to make applesauce instead of fruit salad // Hum. Commun. Res. 2020. V. 46. № 2/3. P. 322–333. https://doi.org/10.1093/hcr/hqz018
  61. Little M.P., Tawn E.J., Tzoulaki I. et al. Comments: The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005 // Int. J. Epidemiol. 2009. V. 38. № 4. P. 1159–1164. https://doi.org/10.1093/ije/dyn122
  62. Dauer L.T., Brooks A.L., Hoel D.G. et al. Review and evaluation of updated researches on the health effects associated with low-dose ionizing radiation // Radiat. Prot. Dosim. 2010. V. 140. № 2. P. 103–136. (Дoпoлнeниe к BEIR-VII.) https://doi.org/10.1093/rpd/ncq141
  63. Shore R.E. Issues and epidemiological evidence regar-ding radiation-induced thyroid cancer // Radiat. Res. 1992. V. 131. № 1. P. 98–111. https://doi.org/10.2307/3578322
  64. Gao L., Ding C.-Y. Low dose radiation exposure and cardiovascular diseases: a review // Int. J. Cardiovasc. Pract. 2017. V. 2. № 4. P. 76–79. https://doi.org/10.21859/ijcp-030103
  65. Koterov A.N. Genomic instability at exposure of low dose radiation with low LET. Mythical mechanism of unproved carcinogenic effects // Int. J. Low Radiat. 2005. V. 1. № 4. P. 376–451. https://doi.org/10.1504/IJLR.2005.007913
  66. Котеров А.Н. Отсутствие фактов нестабильности генома после облучения в малых дозах радиацией с низкой ЛПЭ клеток без явных дефектов и организма вне in utero // Радиац. биология. Радиоэкология. 2006. Т. 46. № 5. С. 585–596. [Koterov A.N. The absence of the facts connected with the genomic instabi-lity after the irradiation in low doses by radiation with low LET // Radiats. Biol. Radioecol. (“Radiation bio-logy. Radioecology”, Moscow). 2006. V. 46. № 5. P. 563–574. (In Russ. Engl. abstr.)]
  67. Wakeford R. Nuclear worker studies: promise and pitfalls // Br. J. Cancer. 2014. V. 110. № 1. P. 1–3. https://doi.org/10.1038/bjc.2013.713
  68. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Сравнение риска смертности от солидных раков после радиационных инцидентов и профессионального облучения // Медицина катастроф. 2021. № 3. С. 34–41. [Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Comparison of the risk of mortality from solid cancers after radiation incidents and occupational exposures // Disaster Medicine (“Meditsina katastrof”, Moscow) 2021. № 3. P. 34–41 (In Russ. Engl. abstr.)] https://doi.org/10.33266/2070-1004-2021-3-34-41
  69. Ashmore J.P., Krewski D., Zielinski J.M. et al. First ana-lysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada // Am. J. Epidemiol. 1998. V. 148. № 6. P. 564–574. https://doi.org/10.1093/oxfordjournals.aje.a009682
  70. UNSCEAR 2012. Report to the General Assembly, with Scientific Annexes. Annex A. Attributing health effects to ionizing radiation exposure and inferring risks. New York, 2015. 86 p.
  71. Little M.P., Wakeford R., Bouffler S.D. et al. Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses // Environ. Int. 2022. V. 159. Art. 106983. https://doi.org/10.1016/j.envint.2021.106983
  72. Котеров А.Н. Малые дозы и малые мощности доз ионизирующей радиации: регламентация диапазонов, критерии их формирования и реалии XXI века // Мед. радиология и радиац. безопасность. 2009. Т. 54. № 3. С. 5–26. [Koterov A.N. Low dose and low dose rate of ionising radiation: the regulation of ranges, criterion of their forming and reality XXI century // Medits. Radiologiya Radiat. Bezopasnost (“Me-dical Radiology and Radiation Safety”; Moscow). 2009. V. 54. № 3. P. 5–26. (In Russ. Engl. abstr.)]
  73. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. V. I. Annex A. Epidemiological studies of radiation and cancer. New York: United Nations, 2008. P. 17–322.
  74. UNSCEAR 2020/2021. Report to the General Assembly, with Scientific Annexes. Volume III. Biological mechanisms relevant for the inference of cancer risks from low-dose and low-dose-rate radiation. New York: United Nations, 2021. 238 p.
  75. Sagan LA. Human effects of chronic, low dose radiation. Implications for adjudication of compensation claims for radiation injury // Arch. Environ. Health. 1966. V. 13. № 3. P. 345–350. https://doi.org/10.1080/00039896.1966.10664568
  76. Smoking and Heart Disease and Stroke. CDC. Centers for Disease Control and Prevention. NCHS. National Center for Health Statistics, Classification of Diseases, Functioning, and Disability. World Health Organization (WHO). 2021. https://www.cdc.gov/tobacco/campaign/tips/diseases/heart-disease-stroke.html (address data 2022/01/22).
  77. Szklo M., Nieto F.J. Epidemiology. Beyond the Basics. 4th Ed. Burlington: Jones & Bartlett Learning, 2019. 577 p.
  78. Radiation Effects Research Foundation. RERF Study Cohorts. Life Span Study (LSS), Adult Health Study (AHS), Children of Atomic-bomb Survivors (F1) Study, Clinical Study of the F1 Offspring of A-bomb Survivors. https://www.rerf.or.jp/uploads/2017/07/Research_explanation-English.pdf (address data 2022/01/18).
  79. Ozasa K., Grant E., Kodama K. Japanese legacy cohorts: The Life Span Study Atomic Bomb Survivor Cohort and Survivors’ Offspring // J. Epidemiol. 2018. V. 28. № 4. P. 162–169. https://doi.org/10.2188/jea.JE20170321
  80. Ozasa K., Shimizu Y., Suyama A. et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases // Radiat. Res. 2012. V. 177. № 3. P. 229–243. https://doi.org/10.1667/RR2629.1
  81. Preston D.L., Shimizu Y., Pierce D.A. et al. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997 // Radiat. Res. 2003. V. 160. № 4. P. 381–407. https://doi.org/10.1667/rr3049
  82. Yamada M., Wong F.L., Fujiwara S. et al. Noncancer disease incidence in atomic bomb survivors, 1958–1998 // Radiat. Res. 2004. V. 161. № 6. P. 622–632. https://doi.org/10.1667/rr3183
  83. Douple E.B., Mabuchi K., Cullings H.M. et al. Long-term radiation-related health effects in a unique human population: lessons learned from the Atomic Bomb Survivors of Hiroshima and Nagasaki // Disaster Med. Public Health Prep. 2011. V. 5. Suppl. 1. P. S122–S133. https://doi.org/10.1001/dmp.2011.21
  84. Kerr G.D. DS86 and DS02 organ dose calculations // Radiat. Prot. Dosimetry. 2012. V. 149. № 1. P. 15–20. https://doi.org/10.1093/rpd/ncr255
  85. Radiation Effects Research Foundation (RERF). Dosimetry System 2002 (DS02). https://www.rerf.or.jp/en/glossary/ds02-en/ (address data 2022/01/18).
  86. Shimizu Y., Kodama K., Nishi N. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003 // Br. Med. J. 2010. V.14. № 340. Article b5349. 8 p. https://doi.org/10.1136/bmj.b5349
  87. Takahashi I., Shimizu Y., Grant E.J. et al. Heart disease mortality in the Life Span Study, 1950–2008 // Radiat. Res. 2017. V. 187. № 3. P. 319–332. https://doi.org/10.1667/RR14347.1
  88. Мосеева М.Б., Азизова Т.В., Григорьева Е.С. и др. Риск смертности от цереброваскулярных заболеваний в когорте работников ПО “Маяк” // Вопр. радиац. безопасности. 2010. № 4. С. 58–64. [Moseeva M.B., Azizova T.V., Grigoryeva E.S. et al. Mortality risk from cerebrovascular diseases in the cohort of Mayak P.A. employees // Voprosy Radiatsionnoy Bezopasnosti (“Issues of radiation safety”, Ozersk). 2010. № 4. P. 58–64. (In Russ.)]
  89. Азизова Т.В., Мьюрхед К.Р., Дружинина М.Б. и др. Риск смертности от ишемической болезни сердца в когорте работников ПО “Маяк” // Мед. радиология и радиац. безопасность. 2011. Т. 56. № 1. С. 18–27. [Azizova1 T.V., Muirhead C.R., Druzhinina M.B. et al. Mortality risk from ischemic heart disease in the cohort of nuclear workers of Mayak PA // Medits. Radiologiia Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2011. V. 56. № 1. P. 18–27. (In Russ. Engl. abst.)]
  90. Talbott E.O., Youk A.O., McHugh-Pemu K.P., Zborowski J.V. Long-term follow-up of the residents of the Three Mile Island accident area: 1979–1998 // Environ. Health Perspect. 2003. V. 111. № 3. P. 341–348. https://doi.org/10.1289/ehp.5662
  91. Laurent O., Metz-Flamant C., Rogel A. et al. Relationship between occupational exposure to ionizing radiation and mortality at the French electricity company, period 1961–2003 // Int. Arch. Occup. Environ. Health. 2010. V. 83. № 8. P. 935–944. https://doi.org/10.1007/s00420-010-0509-3
  92. Anderson J.L., Bertke S.J., Yiin J. et al. Ischaemic heart and cerebrovascular disease mortality in uranium enrichment workers // Occup. Environ. Med. 2020. V. 78. № 2. P. 105–111 https://doi.org/10.1136/oemed-2020-106423
  93. Schubauer-Berigan M.K., Daniels R.D., Bertke S.J. et al. Cancer mortality through 2005 among a pooled cohort of U.S. nuclear workers exposed to external ionizing radiation // Radiat. Res. 2015. V. 183. № 6. P. 620–631. https://doi.org/10.1667/RR13988.1
  94. Zhivin S., Guseva Canu I., Davesne E. et al. Circulatory disease in French nuclear fuel cycle workers chronically exposed to uranium: a nested case-control study // Occup. Environ. Med. 2018. V. 75. № 4. P. 270–76. https://doi.org/10.1136/oemed-2017-104575
  95. Boice JD. Jr. The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update // Int. J. Radiat. Biol. 2017. V. 93. № 10. P. 1079–1092. https://doi.org/10.1080/09553002.2017.1328750
  96. NCRP Report No 136. Evaluation of the linear-nonthreshold dose-response model for ionizing radiation. National Council on Radiation Protection and Measurements, 2001. 263 p.
  97. Котеров А.Н., Вайнсон А.А. Радиационный гормезис и эпидемиология канцерогенеза: “вместе им не сойтись” // Мед. радиология и радиац. безопасность. 2021. Т 66. № 2. С. 36–52. [Koterov A.N., Wainson A.A. Radiation hormesis and epidemiology of carcinogenesis: “Never the twain shall meet” // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2021. V. 66. № 2. P. 36–52. (In Russ. Engl. abstr.)] https://doi.org/10.12737/1024-6177-2021-66-2-36-52
  98. Silver S.R., Bertke S.J. et al. Mortality and ionising radiation exposures among workers employed at the Fernald Feed Materials Production Center (1951–1985) // Occup. Environ. Med. 2013. V. 70. № 7. P. 453–463. https://doi.org/10.1136/oemed-2012-100768
  99. Little M.P., Pawel D., Misumi M. et al. Lifetime morta-lity risk from cancer and circulatory disease predicted from the Japanese atomic bomb survivor Life Span Study data taking account of dose measurement error // Radiat. Res. 2020. V. 194. № 3. P. 259–276. https://doi.org/10.1667/RR15571.1
  100. Rage E., Vacquier B., Blanchardon E. et al. Risk of lung cancer mortality in relation to lung doses among French uranium miners: follow-up 1956–1999 // Radiat. Res. 2012. V. 177. № 3. P. 288–297. https://doi.org/10.1667/rr2689.1
  101. Yiin J.H., Anderson J.L., Daniels R.D. et al. Mortality in a combined cohort of uranium enrichment workers // Am. J. Ind. Med. 2017. V. 60. № 1. P. 96–108. https://doi.org/10.1002/ajim.22668
  102. Schollnberger H., Kaiser J.C. Estimating risk of circulatory disease from exposure to low-level ionizing radiation // Environ. Health Perspect. 2012. V. 120. № 12. P. A452–A453; author reply A453. https://doi.org/10.1289/ehp.1206046
  103. Vatz J.B. Meta-analysis: apples and oranges, or fruitless // Physic. Exec. 1991. V. 17. № 3. P. 40–42.
  104. Gallo P.S. Jr. Meta-analysis – a mixed metaphor? // Am. Psychol. 1978. V. 33. P. 515–517.
  105. Wortman P.M. Evaluation research: A methodological perspective // Ann. Rev. Psychol. 1983. V. 34. № 1. 223–260. https://doi.org/10.1146/annurev.ps.34.020183.001255
  106. Eysenck H.J. Meta-analysis: an abuse of research integration // J. Spec. Educ. 1984. V. 18. № 1. P. 41–59. https://doi.org/10.1177/002246698401800106
  107. Fletcher J. What is heterogeneity and is it important? // Br. Med. J. 2007. V. 334. № 7584. P. 94–96. https://doi.org/.1136/bmj.39057.406644.68.
  108. Blettner M., Sauerbrei W., Schlehofer B. et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology // Int. J. Epidemiol. 1999. V. 28. № 1. P. 1–9. https://doi.org/10.1093/ije/28.1.1
  109. Hill A.B. Medical ethics and controlled trials // Br. Med. J. 1963. V. 1. № 5337. P. 1043–1049. https://doi.org/10.1136/bmj.1.5337.1043
  110. Koterov A.N., Ushenkova L.N., Biryukov A.P., Samoilov A.S. RET/PTC gene rearrangements frequency in papillary thyroid carcinoma worldwide depending on time after Chernobyl Nuclear Power Plant accident (pooled-analysis). Possible contribution of factors of diagnosis, “aggressive surgery”, radiation and age // Medits. Radiologiia Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2016. V. 61. № 2. P. 5–21. (In Engl.)
  111. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Отсутствие повышения частоты генных перестроек RET/PTC в папиллярных карциномах щитовидной железы после облучения в малых дозах. Объединенный анализ (pooled-анализ) молекулярно-эпидемиологических данных // Радиац. биология. Радиоэкология. 2017. Т. 57. № 2. С. 152–170. [Koterov A.N., Ushenkova L.N., Biryukov A.P. The absence of increase of RET/PTC gene rearrangement frequency in papillary thyroid carcinoma in human cohorts after irradiation at low doses. Pooled analysis of molecular epidemiological data // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2017. V. 57. № 2. P. 152–170. (In Russ. Engl. abstr.)] https://doi.org/10.7868/S0869803117020096
  112. Berrington A., Darby S.C., Weiss H.A., Doll R. 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997 // Br. J. Radiol. 2001. V. 74. № 882. P. 507–519. https://doi.org/10.1259/bjr.74.882.740507
  113. Feinstein A.R. Meta-analysis: statistical alchemy for the 21st century // J. Clin. Epidemiol. 1995. V. 48. № 1. P. 71–79. https://doi.org/10.1016/0895-4356(94)00110-c
  114. Shapiro S. Meta-analysis/Shmeta-analysis // Am. J. Epidemiol. 1994. V. 140. № 9. P. 771–778. https://doi.org/10.1093/oxfordjournals.aje.a117324
  115. Azizova T.V., Haylock R.G., Moseeva M.B. et al. Cerebrovascular diseases incidence and mortality in an extended Mayak Worker Cohort 1948–1982 // Radiat. Res. 2014. V. 182. № 5. P. 529–544. https://doi.org/10.1667/RR13680.1
  116. Котеров А.Н., Ушенкова Л.Н., Зубенкова Э.С. и др. Сила связи. Сообщение 1. Градации относительного риска // Мед. радиология и радиац. безопасность. 2019. Т. 64. № 4. С. 5–17. [Koterov A.N., Ushenkova L.N., Zubenkova E.S. et al. Strength of association. Report 1. Graduation of relative risk // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2019. V. 64. № 4. P. 5–17. (In Russ. Engl. abstr.)] https://doi.org/10.12737/article_5d1adb25725023.14868717
  117. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 1: Первые пять критериев Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т. 61. № 3. С. 300–332. [Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 3, Part 1: First five Hill”s criteria: use and limitations // Radiats. Biol. Radioecol. (“Radiation biology. Radioecology”, Moscow). 2021. V. 61. № 3. P. 300–332. (In Russian. English abstract.)] https://doi.org/10.31857/S0869803121030085
  118. Monson R.R. Occupational Epidemiology. Florida: Boca Raton: CRC Press, 1980. 219 p.; 2nd Ed. Florida: Boca Raton, CRC Press Inc., 1990. 312 p.
  119. Taubes G. Epidemiology faces its limits // Science. 1995. V. 269. № 5221. P. 164–169. https://doi.org/10.1126/science.7618077
  120. Lagarde F., Cullings H.M., Shimizu Y., Cologne J.B. Tiny excess relative risks hard to pin down (rapid response to Cardis et al 2005) // Br. Med. J. 2005. V. 331. № 7508. P. 77–81. https://doi.org/10.1136/bmj.38499.599861.E0. https://www.bmj.com/content/331/7508/77/rapid-responses (address data 2022/01/29).
  121. Cardis E., Vrijheid M., Blettner M. et al. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries // Br. Med. J. 2005. V. 331. № 7508. P. 77–82. https://doi.org/10.1136/bmj.38499.599861.E0
  122. Lagarde F. Methodology issues in epidemiological assessment of health effects of low-dose ionising radiation // Radiat. Prot. Dosim. 2003. V. 104. № 4. P. 297–314. https://doi.org/10.1093/oxfordjournals.rpd.a006193
  123. Boffetta P. Causation in the presence of weak associations // Critical Reviews in Food Science and Nutrition. 2010. V. 50. Suppl. 1. P. 13–16. https://doi.org/10.1080/10408398.2010.526842
  124. Котеров А.Н. Радиационно-индуцированная нестабильность генома при действии малых доз радиации в научных публикациях и в документах международных организаций последних лет // Мед. радиология и радиац. безопасность. 2009. Т. 54. № 4. С. 5–13. [Koterov A.N. Radiation-induced genomic instability at low dose radiation in scientific publications and in the documents of international organizations at the last years // Medits. Radiologiya Radiat. Bezopasnost (“Medical Radiology and Radiation Safety”; Moscow). 2009. V. 54. № 4. P. 5–13. (In Russ. Engl. abstr.)]
  125. UNSCEAR 2012. Report to the General Assembly, with Scientific Annex. Biological mechanism of radiation action at low doses. New York, 2012. 35 p.
  126. Holm L.E., Hall P., Wiklund K. et al. Cancer risk after iodine-131 therapy for hyperthyroidism // J. Natl. Cancer Inst. 1991. V. 83. № 15. P. 1072–1077. https://doi.org/10.1093/jnci/83.15.1072
  127. Matanoski G.M., Seltser R., Sartwell P.E. et al. The current mortality rates of radiologists and other physician specialists: specific causes of death // Am. J. Epidemiol. 1975. V. 101. № 3. P. 199–210. https://doi.org/10.1093/oxfordjournals.aje.a112087
  128. Logue J.N., Barrick M.K., Jessup G.L. Jr. Mortality of radiologists and pathologists in the Radiation Registry of Physicians // J. Occup. Med. 1986. V. 28. № 2. P. 91–99.
  129. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946–95 // J. Radiol. Prot. 2000. V. 20. № 2. P. 111–137. https://doi.org/10.1088/0952-4746/20/2/301
  130. McGeoghegan D., Binks K. The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–95 // J. Radiol. Prot. 2000b. V. 20. № 4. P. 381–401. https://doi.org/10.1088/0952-4746/20/4/303
  131. Richardson D.B., Wing S. Radiation and mortality of workers at Oak Ridge National Laboratory: positive associations for doses received at older ages // Environ. Health Perspect. 1999. V. 107. № 8. P. 649–656. https://doi.org/10.1289/ehp.99107649
  132. Tomasek L., Swerdlow A.J., Darby S.C. et al. Mortality in uranium miners in west Bohemia: a long-term cohort study // Occup. Environ. Med. 1994. V. 51. № 5. P. 308–315. https://doi.org/10.1136/oem.51.5.308
  133. Wagoner J.K., Archer V.E., Carroll B.E. et al. Cancer mortality patterns among U.S. uranium miners and millers, 1950 through 1962 // J. Nat. Cancer Inst. 1964. V. 32. № 4. P. 787–801. https://doi.org/10.1093/jnci/32.4.787
  134. Xuan X.Z., Lubin J.H., Li J.Y. et al. A cohort study in southern China of tin miners exposed to radon and radon decay products // Health Phys. 1993. V. 64. № 2. P. 120–131. https://doi.org/10.1097/00004032-199302000-00001
  135. Lane R.S., Frost S.E., Howe G.R., Zablotska L.B. Mortality (1950–1999) and cancer incidence (1969–1999) in the cohort of Eldorado uranium workers // Radiat. Res. 2010. V. 174. № 6. P. 773–785. https://doi.org/10.1667/RR2237.1
  136. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex E. Sources-to-effects assessment for radon in homes and workplaces. New York, 2009. P. 197–334.
  137. Simonetto C., Azizova T.V., Grigoryeva E.S. et al. Ische-mic heart disease in workers at Mayak PA: latency of incidence risk after radiation exposure // PLoS ONE. 2014. V. 9. № 5. Article e96309. 10 p. https://doi.org/10.1371/journal.pone.0096309
  138. Azizova T.V., Bannikova M.V., Grigoryeva E.S. et al. Mortality from various diseases of the circulatory system in the Russian Mayak nuclear worker cohort: 1948–2018 // J. Radiol. Prot. 2022. Jan 13. Preprint. https://doi.org/10.1088/1361-6498/ac4ae3
  139. UNSCEAR 2008. Report to the General Assembly, with Scientific Annexes. Volume I. Annex A. Medical radiation exposures. New York: United Nations. 2010. P. 23–220.
  140. Puukila S., Lemon J.A., Lees S.J. et al. Impact of ionizing radiation on the cardiovascular system: a review // Radiat. Res. 2017. V. 188. № 4.2. P. 539–546. https://doi.org/10.1667/RR14864.1

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (333KB)
3.

Download (482KB)
4.

Download (286KB)
5.

Download (261KB)
6.

Download (187KB)

Copyright (c) 2023 А.Н. Котеров, Л.Н. Ушенкова, А.А. Вайнсон, И.Г. Дибиргаджиев, А.П. Бирюков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies