Регуляция пачечной динамики в нейрон-глиальной сети с синаптической пластичностью

Обложка

Цитировать

Полный текст

Аннотация

Цель настоящего исследования — разработка и исследование модели астроцитарной регуляции пачечной динамики импульсной нейронной сети с синаптической пластичностью в тормозных синапсах. Методы. В качестве модели нейрона была использована модель «сброса и накопления». Для описания динамики синаптических связей была использована модель зависимого от проводимости синапса с соответствующим характерным временем релаксации для возбуждающих и тормозных синапсов. При этом в динамике тормозных синапсов между возбуждающими и тормозными нейронами была использована модель тормозной синаптической пластичности, описанная в работе Вогеля. В то же время динамика возбуждающих синапсов регулировалась среднеполевой моделью концентрации глиотрансмиттера. Результаты. Была разработана и исследована модель регуляции пачечной динамики в нейрон-глиальной сети с тормозной синаптической пластичностью. Были получены основные динамические режимы нейронной активности в отсутствие регуляций, в присутствии только синаптической пластичности и в присутствии также астроцитарной регуляции синаптической передачи. Было проведено исследование влияния астроцитарной модуляции на частоту пачечной активности нейронной сети. Заключение. В результате исследования показана возможность управления пачечной активностью импульсной нейронной сети за счет учета тормозной синаптической пластичности для тормозных синапсов между тормозными и возбуждающими нейронами, а также астроцитарной модуляции возбуждающих синапсов. Астроцитарная модуляция синаптической передачи может выступать дополнительным механизмом поддержания гомеостаза в нейронной сети помимо синаптической передачи, существующей на более быстром временном масштабе.

Об авторах

Сергей Викторович Стасенко

Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)

ORCID iD: 0000-0002-3032-5469
Scopus Author ID: 55327776400
ResearcherId: J-4825-2013
603950 Нижний Новгород, проспект Гагарина, 23

Список литературы

  1. Izhikevich E. M. Bursting // Scholarpedia. 2006. Vol. 1, no. 3. P. 1300. DOI: 10.4249/ scholarpedia.1300.
  2. Izhikevich E., Desai N., Walcott E., Hoppensteadt F. Bursts as a unit of neural information: Selective communication via resonance // Trends in Neurosciences. 2003. Vol. 26, no. 3. P. 161–167. doi: 10.1016/S0166-2236(03)00034-1.
  3. Sjostrom P., Hausser M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons // Neuron. 2006. Vol. 51, no. 2. P. 227–238. doi: 10.1016/j.neuron.2006.06.017.
  4. Abeles M. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press. 1991. 280 p. doi: 10.1017/CBO9780511574566.
  5. Wagenaar D., Madhavan R., Pine J., Potter S. Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation // The Journal of Neuroscience. 2005. Vol. 25, no. 3. P. 680–688. doi: 10.1523/JNEUROSCI.4209-04.2005.
  6. Zeldenrust F., Wadman W., Englitz B. Neural coding with bursts—Current state and future perspectives // Frontiers in Computational Neuroscience. 2018. Vol. 12. P. 48. doi: 10.3389/fncom. 2018.00048.
  7. Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V. Spiking signatures of spontaneous activity bursts in hippocampal cultures // Frontiers in Computational Neuroscience. 2011. Vol. 5. P. 46. doi: 10.3389/fncom.2011.00046.
  8. Tsybina Y., Kastalskiy I., Kazantsev V., Gordleeva S. Synchronization events in a spiking neural network // Proceedings of the Fourth International Conference Neurotechnologies And Neurointerfaces (CNN), 2022. P. 206–208. doi: 10.1109/CNN56452.2022.9912521.
  9. Boccaletti S., Pisarchik A. N., Del Genio C. I., Amann A. Synchronization: from coupled systems to complex networks. Cambridge University Press, 2018. 255 p. doi: 10.1017/9781107297111.
  10. Pisarchik A.N., Hramov A.E. Coherence resonance in neural networks: Theory and experiments // Physics Reports. 2023. Vol. 1000. P. 1–57. doi: 10.1016/j.physrep.2022.11.004.
  11. Stasenko S., Lazarevich I., Kazantsev V. Quasi-synchronous neuronal activity of the network induced by astrocytes // Procedia Computer Science. 2020. Vol. 169. P. 704–709. DOI: 10.1016/ j.procs.2020.02.175.
  12. Лазаревич И. А., Стасенко С. В., Казанцев В. Б. Синаптическая мультистабильность и сетевая синхронизация, индуцированные нейрон-глиальным взаимодействием в мозге // Письма в Журнал экспериментальной и теоретической физики. 2017. Т. 105, №3–4. С. 198–201. doi: 10.7868/S0370274X17030134.
  13. Stasenko S., Kazantsev V. Information Encoding in Bursting Spiking Neural Network Modulated by Astrocytes // Entropy. 2023. Vol. 25, no. 5. P. 745. doi: 10.3390/e25050745.
  14. Makovkin S., Kozinov E., Ivanchenko M., Gordleeva S. Controlling synchronization of gamma oscillations by astrocytic modulation in a model hippocampal neural network // Scientific Reports. 2022. Vol. 12. P. 6970. doi: 10.1038/s41598-022-10649-3.
  15. Kazantsev V., Gordleeva S., Stasenko S., Dityatev A. A homeostatic model of neuronal firing governed by feedback signals from the extracellular matrix // PLoS ONE. 2012. Vol. 7, no. 7. P. e41646. doi: 10.1371/journal.pone.0041646.
  16. Lazarevich I., Stasenko S., Rozhnova M., Pankratova E., Dityatev A., Kazantsev V. Activitydependent switches between dynamic regimes of extracellular matrix expression // PLoS ONE. 2020. Vol. 15, no. 1. P. e0227917. doi: 10.1371/journal.pone.0227917.
  17. Rozhnova M., Pankratova E., Stasenko S., Kazantsev V. Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix // Chaos, Solitons & Fractals. 2021. Vol. 151. P. 111253. doi: 10.1016/j.chaos.2021.111253.
  18. Stasenko S., Kazantsev V. Bursting dynamics of spiking neural network induced by active extracellular medium // Mathematics. 2023. Vol. 11, no. 9. P. 2109. doi: 10.3390/math11092109.
  19. Siegelbaum S. A., Kandel E. R. Learning-related synaptic plasticity: LTP and LTD // Current Opinion in Neurobiology. 1991. Vol. 1, no. 1. P. 113–120. doi: 10.1016/0959-4388(91)90018-3.
  20. Maffei A. The many forms and functions of long term plasticity at GABAergic synapses // Neural Plasticity. 2011. Vol. 2011. P. 254724. doi: 10.1155/2011/254724.
  21. Allene C., Lourenco J., Bacci A. The neuronal identity bias behind neocortical GABAergic plasticity // Trends in Neurosciences. 2015. Vol. 38, no. 9. P. 524–534. doi: 10.1016/j.tins. 2015.07.008.
  22. Vogels T. P., Froemke R. C., Doyon N., Gilson M., Haas J. S., Liu R., Maffei A., Miller P., Wierenga C. J., Woodin M. A. Inhibitory synaptic plasticity: Spike timing-dependence and putative network function // Frontiers in Neural Circuits. 2013. Vol. 7. P. 119. doi: 10.3389/fncir.2013.00119.
  23. Scanziani M., Hausser M. Electrophysiology in the age of light // Nature. 2009. Vol. 461. P. 930–939. doi: 10.1038/nature08540.
  24. Gaiarsa J., Caillard O., Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: Mechanisms and functional significance // Trends in Neurosciences. 2002. Vol. 25, no. 11. P. 564–570. doi: 10.1016/S0166-2236(02)02269-5.
  25. Mapelli J., Gandolfi D., Vilella A., Zoli M., Bigiani A. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors // PNAS. 2016. Vol. 113, no. 35. P. 9898–9903. doi: 10.1073/pnas.1601194113.
  26. Maffei A., Nelson S. B., Turrigiano G. G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation // Nature Neuroscience. 2004. Vol. 7. P. 1353–1359. DOI: 10.1038/ nn1351.
  27. Castillo P. E., Chiu C. Q., Carroll R. C. Long-term plasticity at inhibitory synapses // Current Opinion in Neurobiology. 2011. Vol. 21, no. 2. P. 328–338. doi: 10.1016/j.conb.2011.01.006.
  28. Ahumada J., Fernandez de Sevilla D., Couve A., Buno W., Fuenzalida M. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors // Hippocampus. 2013. Vol. 23. P. 1439–1452. doi: 10.1002/hipo.22196.
  29. Maffei A., Nataraj K., Nelson S. B., Turrigiano G. G. Potentiation of cortical inhibition by visual deprivation // Nature. 2006. Vol. 443. P. 81–84. doi: 10.1038/nature05079.
  30. Barberis A. Postsynaptic plasticity of GABAergic synapses // Neuropharmacology. 2020. Vol. 169. P. 107643. doi: 10.1016/j.neuropharm.2019.05.020.
  31. Chiu C. Q., Barberis A., Higley M. J. Preserving the balance: Diverse forms of long-term GABAergic synaptic plasticity // Nature Reviews Neuroscience. 2019. Vol. 20. P. 272–281. doi: 10.1038/s41583-019-0141-5.
  32. Lecca S., Trusel M., Mameli M. Footshock-induced plasticity of GABAB signalling in the lateral habenula requires dopamine and glucocorticoid receptors // Synapse. 2017. Vol. 71, no. 6. P. e21948. doi: 10.1002/syn.21948.
  33. Sanchez-Rodrıguez I., Gruart A., Delgado-Garcıa J. M., Jimenez-Dıaz L., Navarro-Lopez J. D. Role of GirK channels in long-term potentiation of synaptic inhibition in an in vivo mouse model of early amyloid-β pathology // International Journal of Molecular Sciences. 2019. Vol. 20, no. 5. P. 1168. doi: 10.3390/ijms20051168.
  34. Hennequin G., Agnes E. J., Vogels T. P. Inhibitory plasticity: balance, control, and codependence // Annual Review of Neuroscience. 2017. Vol. 40. P. 557–579. doi: 10.1146/annurev-neuro-072116-031005.
  35. Damour J., Froemke R. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex // Neuron. 2015. Vol. 86, no. 2. P. 514–528. doi: 10.1016/j.neuron.2015.03.014.
  36. Vickers E. D., Clark C., Osypenko D., Fratzl A., Kochubey O., Bettler B., Schneggenburger R. Parvalbumin-interneuron output synapses show spike-timing-dependent plasticity that contributes to auditory map remodeling // Neuron. 2018. Vol. 99, no. 4. P. 720–735.e6. DOI: 10.1016/j. neuron.2018.07.018.
  37. Wang L., Maffei A. Inhibitory plasticity dictates the sign of plasticity at excitatory synapses // The Journal of Neuroscience. 2014. Vol. 34, no. 4. P. 1083–1093. doi: 10.1523/JNEUROSCI.4711-13.2014.
  38. Wilmes K. A., Clopath C. Inhibitory microcircuits for top-down plasticity of sensory representations // Nature Communications. 2019. Vol. 10. P. 5055. doi: 10.1038/s41467-019-12972-2.
  39. Soloduchin S., Shamir M. Rhythmogenesis evolves as a consequence of long-term plasticity of inhibitory synapses // Scientific Reports. 2018. Vol. 8. P. 13050. doi: 10.1038/s41598-018-31412-7.
  40. Weber S. N., Sprekeler H. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity // eLife. 2018. Vol. 7. P. e34560. doi: 10.7554/eLife.34560.
  41. Gilra A., Gerstner W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network // eLife. 2017. Vol. 6. P. e28295. doi: 10.7554/eLife.28295.
  42. Luque N. R., Garrido J. A., Naveros F., Carrillo R. R., D’Angelo E., Ros E. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model // Frontiers in Computational Neuroscience. 2016. Vol. 10. P. 17. doi: 10.3389/fncom.2016.00017.
  43. Vogels T. P., Sprekeler H., Zenke F., Clopath C., Gerstner W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks // Science. 2011. Vol. 334, no. 6062. P. 1569–1573. doi: 10.1126/science.1211095.
  44. Araque A., Parpura V., Sanzgiri R., Haydon P. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons // European Journal of Neuroscience. 1998. Vol. 10, no. 6. P. 2129–2142. doi: 10.1046/j.1460-9568.1998.00221.x.
  45. Araque A., Parpura V., Sanzgiri R., Haydon P. Tripartite synapses: Glia, the unacknowledged partner // Trends in Neurosciences. 1999. Vol. 22, no. 5. P. 208–215. doi: 10.1016/S0166- 2236(98)01349-6.
  46. Haydon P. GLIA: Listening and talking to the synapse // Nature Reviews Neuroscience. 2001. Vol. 2. P. 185–193. doi: 10.1038/35058528.
  47. Nadkarni S., Jung P. Dressed neurons: Modeling neural-glial interactions // Physical Biology. 2004. Vol. 1, no. 1. P. 35–41. doi: 10.1088/1478-3967/1/1/004.
  48. Nadkarni S., Jung P. Modeling synaptic transmission of the tripartite synapse // Physical Biology. 2007. Vol. 4, no. 1. P. 1–9. doi: 10.1088/1478-3975/4/1/001.
  49. Volman V., Ben-Jacob E., Levine H. The astrocyte as a gatekeeper of synaptic information transfer // Neural Computation. 2007. Vol. 19, no. 2. P. 303–326. doi: 10.1162/neco.2007.19.2.303.
  50. De Pitta M., Volman V., Berry H., Ben-Jacob E. A tale of two stories: Astrocyte regulation of synaptic depression and facilitation // PLoS Computational Biology. 2011. Vol. 7, no. 12. P. e1002293. doi: 10.1371/journal.pcbi.1002293.
  51. Gordleeva S., Stasenko S., Semyanov A., Dityatev A., Kazantsev V. Bi-directional astrocytic regulation of neuronal activity within a network // Frontiers in Computational Neuroscience. 2012. Vol. 6. P. 92. doi: 10.3389/fncom.2012.00092.
  52. De Pitta M. Gliotransmitter exocytosis and its consequences on synaptic transmission // Computational Glioscience. 2019. P. 245–287. doi: 10.1007/978-3-030-00817-8_10.
  53. Lenk K., Satuvuori E., Lallouette J., Guevara A., Berry H., Hyttinen J. A computational model of interactions between neuronal and astrocytic networks: The role of astrocytes in the stability of the neuronal firing rate // Frontiers in Computational Neuroscience. 2020. Vol. 13. P. 92. doi: 10.3389/fncom.2019.00092.
  54. Barabash N., Levanova T., Stasenko S. STSP model with neuron-glial interaction produced bursting activity // Proceedings of the Third International Conference Neurotechnologies And Neurointerfaces (CNN). 2021. P. 12–15. doi: 10.1109/CNN53494.2021.9580314.
  55. Stasenko S., Kazantsev V. 3D model of bursting activity generation // Proceedings of the Fourth International Conference Neurotechnologies and Neurointerfaces (CNN). 2022. P. 176–179. doi: 10.1109/CNN56452.2022.9912507.
  56. Barabash N., Levanova T., Stasenko S. Rhythmogenesis in the mean field model of the neuron–glial network // The European Physical Journal Special Topics. 2023. Vol. 232. P. 1–6. DOI: 10.1140/ epjs/s11734-023-00778-9.
  57. Olenin S., Levanova T., Stasenko S. Dynamics in the Reduced Mean-Field Model of Neuron–Glial Interaction // Mathematics. 2023. Vol. 11, no. 9. P. 2143. doi: 10.3390/math11092143.
  58. Stasenko S. V., Hramov A. E., Kazantsev V. B. Loss of neuron network coherence induced by virus-infected astrocytes: A model study // Scientific Reports. 2023. Vol. 13, no. 1. P. 6401. doi: 10.1038/s41598-023-33622-0.
  59. Postnov D., Koreshkov R., Brazhe N., Brazhe A., Sosnovtseva O. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks // Journal of Biological Physics. 2009. Vol. 35. P. 425–445. doi: 10.1007/s10867-009-9156-x.
  60. De Pitta M., Brunel N. Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model // PNAS. 2022. Vol. 119, no. 43. P. e2207912119. doi: 10.1073/pnas.2207912119.
  61. Stasenko S., Kazantsev V. Astrocytes Enhance Image Representation Encoded in Spiking Neural Network // Advances in Neural Computation, Machine Learning, and Cognitive Research VI. 2022. Vol. 1064. P. 200–206. doi: 10.1007/978-3-031-19032-2_20.
  62. Stasenko S., Kazantsev V. Dynamic Image Representation in a Spiking Neural Network Supplied by Astrocytes // Mathematics. 2023. Vol. 11, no. 3. P. 561. doi: 10.3390/math11030561.
  63. Gordleeva S., Tsybina Y., Krivonosov M., Ivanchenko M., Zaikin A., Kazantsev V., Gorban A. Modeling working memory in a spiking neuron network accompanied by astrocytes // Frontiers in Cellular Neuroscience. 2021. Vol. 15. P. 631485. doi: 10.3389/fncel.2021.631485.
  64. Zimin I., Kazantsev V., Stasenko S. Artificial Neural Network Model with Astrocyte-Driven ShortTerm Memory // Biomimetics. 2023. Vol. 8, no. 5. P. 422. doi: 10.3390/biomimetics8050422.
  65. Blum Moyse L., Berry H. Modelling the modulation of cortical Up-Down state switching by astrocytes // PLoS Computational Biology. 2022. Vol. 18. P. e1010296. doi: 10.1371/journal. pcbi.1010296.
  66. Angulo M. C., Kozlov A. S., Charpak S., Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus // The Journal of Neuroscience. 2004. Vol. 24, no. 31. P. 6920–6927. doi: 10.1523/JNEUROSCI.0473-04.2004.
  67. Halassa M., Fellin T., Haydon P. Tripartite synapses: Roles for astrocytic purines in the control of synaptic physiology and behavior // Neuropharmacology. 2009. Vol. 57, no. 4. P. 343–346. doi: 10.1016/j.neuropharm.2009.06.031.
  68. Perea G., Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses // Science. 2007. Vol. 317, no. 5841. P. 1083–1086. doi: 10.1126/science.1144640.
  69. Jourdain P., Bergersen L., Bhaukaurally K., Bezzi P., Santello M., Domercq M., Matute C., Tonello F., Gundersen V., Volterra A. Glutamate exocytosis from astrocytes controls synaptic strength // Nature Neuroscience. 2007. Vol. 10. P. 331–339. doi: 10.1038/nn1849.
  70. Fiacco T., McCarthy K. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons // The Journal of Neuroscience. 2004. Vol. 24, no. 3. P. 722–732. doi: 10.1523/jneurosci.2859-03.2004.
  71. Farrant M., Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors // Nature Reviews Neuroscience. 2005. Vol. 6. P. 215–229. doi: 10.1038/nrn1625.
  72. Gu N., Jackson J., Goutagny R., Lowe G., Manseau F., Williams S. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks // The Journal of Neuroscience. 2013. Vol. 33, no. 19. P. 8276–8287. doi: 10.1523/JNEUROSCI.0179-13.2013.
  73. Teles-Grilo Ruivo L., Mellor J. Cholinergic modulation of hippocampal network function // Frontiers in Synaptic Neuroscience. 2013. Vol. 5. P. 2. doi: 10.3389/fnsyn.2013.00002.
  74. Puig M., Gulledge A. Serotonin and prefrontal cortex function: neurons, networks, and circuits // Molecular Neurobiology. 2011. Vol. 44. P. 449–464. doi: 10.1007/s12035-011-8214-0.
  75. Feldmeyer D., Egger V., Lubke J., Sakmann B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex // The Journal Of Physiology. 1999. Vol. 521, no. 1. P. 169–190. DOI: 10.1111%2Fj.1469-7793. 1999.00169.x.
  76. Isaacson J., Scanziani M. How inhibition shapes cortical activity // Neuron. 2011. Vol. 72, no. 2. P. 231–243. doi: 10.1016/j.neuron.2011.09.027.
  77. Pouille F., Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feedforward inhibition // Science. 2001. Vol. 293, no. 5532. P. 1159–1163. doi: 10.1126/science. 1060342.
  78. Galarreta M., Hestrin S. Spike transmission and synchrony detection in networks of GABAergic interneurons // Science. 2001. Vol. 292, no. 5525. P. 2295–2299. doi: 10.1126/science.1061395.
  79. Borgers C., Kopell N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity // Neural Computation. 2003. Vol. 15, no. 3. P. 509–538. DOI: 10.1162/ 089976603321192059.
  80. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence // Trends In Cognitive Sciences. 2005. Vol. 9, no. 10. P. 474–480. DOI: 10.1016/ j.tics.2005.08.011.
  81. Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P., Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors // Neuron. 2004. Vol. 43, no. 5. P. 729–743. doi: 10.1016/j.neuron.2004.08.011.
  82. Parpura V., Zorec R. Gliotransmission: Exocytotic release from astrocytes // Brain Research Reviews. 2010. Vol. 63, no. 1-2. P. 83–92. doi: 10.1016/j.brainresrev.2009.11.008.
  83. Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave // Nature Neuroscience. 2016. Vol. 19. P. 182–189. doi: 10.1038/nn.4201.
  84. MacVicar B., Newman E. Astrocyte regulation of blood flow in the brain // Cold Spring Harbor Perspectives in Biology. 2015. Vol. 7. P. a020388. doi: 10.1101/cshperspect.a020388.
  85. Perea G., Navarrete M., Araque A. Tripartite synapses: astrocytes process and control synaptic information // Trends in Neurosciences. 2009. Vol. 32, no. 8. P. 421–431. doi: 10.1016/j.tins. 2009.05.001.
  86. Navarrete M., Perea G., Sevilla D., Gomez-Gonzalo M., Nunez A., Martın E., Araque A. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity // PLoS Biology. 2012. Vol. 10. P. e1001259. doi: 10.1371/journal.pbio.1001259.
  87. Fellin T. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity // Journal Of Neurochemistry. 2009. Vol. 108, no. 3. P. 533–544. doi: 10.1111/j.1471-4159.2008.05830.x.
  88. Carmignoto G., Fellin T. Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus // Journal Of Physiology-Paris. 2006. Vol. 99, no. 2-3. P. 98–102. doi: 10.1016/j.jphysparis.2005.12.008.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах