Regulation of burst dynamics in the neuron-glial network with synaptic plasticity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The purpose of this study is to develop and investigate a model of astrocytic regulation of burst dynamics of a spiking neural network with synaptic plasticity in inhibitory synapses. Methods. The “integrate and firing” model was used as a neuron model. To describe the dynamics of synaptic connections, a conductance-dependent synapse model with corresponding characteristic relaxation times for excitatory and inhibitory synapses was used. At the same time, inhibitory synaptic plasticity, described by the Vogel model, was used in the dynamics of inhibitory synapses between excitatory and inhibitory neurons. At the same time, the dynamics of excitatory synapses was regulated by the mean-field model of gliotransmitter concentration. Results. A model for the regulation of burst dynamics in a neuron-glial network with inhibitory synaptic plasticity was developed and studied. The main dynamic modes of neuronal activity were obtained in the absence of regulation, in the presence of only synaptic plasticity, and in the presence of also astrocytic regulation of synaptic transmission. A study was conducted of the influence of astrocytic modulation on the frequency of burst activity of the neural network. Conclusion. The study showed the possibility of controlling the burst activity of a spiking neural network by taking into account inhibitory synaptic plasticity for inhibitory synapses between inhibitory and excitatory neurons, as well as astrocytic modulation of excitatory synapses. Astrocytic modulation of synaptic transmission may act as an additional mechanism for maintaining homeostasis in the neural network beyond synaptic transmission, which exists on a faster time scale.

Авторлар туралы

Sergey Stasenko

Lobachevsky State University of Nizhny Novgorod

ORCID iD: 0000-0002-3032-5469
Scopus Author ID: 55327776400
ResearcherId: J-4825-2013
603950 Nizhny Novgorod, Gagarin Avenue, 23

Әдебиет тізімі

  1. Izhikevich E. M. Bursting // Scholarpedia. 2006. Vol. 1, no. 3. P. 1300. DOI: 10.4249/ scholarpedia.1300.
  2. Izhikevich E., Desai N., Walcott E., Hoppensteadt F. Bursts as a unit of neural information: Selective communication via resonance // Trends in Neurosciences. 2003. Vol. 26, no. 3. P. 161–167. doi: 10.1016/S0166-2236(03)00034-1.
  3. Sjostrom P., Hausser M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons // Neuron. 2006. Vol. 51, no. 2. P. 227–238. doi: 10.1016/j.neuron.2006.06.017.
  4. Abeles M. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press. 1991. 280 p. doi: 10.1017/CBO9780511574566.
  5. Wagenaar D., Madhavan R., Pine J., Potter S. Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation // The Journal of Neuroscience. 2005. Vol. 25, no. 3. P. 680–688. doi: 10.1523/JNEUROSCI.4209-04.2005.
  6. Zeldenrust F., Wadman W., Englitz B. Neural coding with bursts—Current state and future perspectives // Frontiers in Computational Neuroscience. 2018. Vol. 12. P. 48. doi: 10.3389/fncom. 2018.00048.
  7. Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V. Spiking signatures of spontaneous activity bursts in hippocampal cultures // Frontiers in Computational Neuroscience. 2011. Vol. 5. P. 46. doi: 10.3389/fncom.2011.00046.
  8. Tsybina Y., Kastalskiy I., Kazantsev V., Gordleeva S. Synchronization events in a spiking neural network // Proceedings of the Fourth International Conference Neurotechnologies And Neurointerfaces (CNN), 2022. P. 206–208. doi: 10.1109/CNN56452.2022.9912521.
  9. Boccaletti S., Pisarchik A. N., Del Genio C. I., Amann A. Synchronization: from coupled systems to complex networks. Cambridge University Press, 2018. 255 p. doi: 10.1017/9781107297111.
  10. Pisarchik A.N., Hramov A.E. Coherence resonance in neural networks: Theory and experiments // Physics Reports. 2023. Vol. 1000. P. 1–57. doi: 10.1016/j.physrep.2022.11.004.
  11. Stasenko S., Lazarevich I., Kazantsev V. Quasi-synchronous neuronal activity of the network induced by astrocytes // Procedia Computer Science. 2020. Vol. 169. P. 704–709. DOI: 10.1016/ j.procs.2020.02.175.
  12. Лазаревич И. А., Стасенко С. В., Казанцев В. Б. Синаптическая мультистабильность и сетевая синхронизация, индуцированные нейрон-глиальным взаимодействием в мозге // Письма в Журнал экспериментальной и теоретической физики. 2017. Т. 105, №3–4. С. 198–201. doi: 10.7868/S0370274X17030134.
  13. Stasenko S., Kazantsev V. Information Encoding in Bursting Spiking Neural Network Modulated by Astrocytes // Entropy. 2023. Vol. 25, no. 5. P. 745. doi: 10.3390/e25050745.
  14. Makovkin S., Kozinov E., Ivanchenko M., Gordleeva S. Controlling synchronization of gamma oscillations by astrocytic modulation in a model hippocampal neural network // Scientific Reports. 2022. Vol. 12. P. 6970. doi: 10.1038/s41598-022-10649-3.
  15. Kazantsev V., Gordleeva S., Stasenko S., Dityatev A. A homeostatic model of neuronal firing governed by feedback signals from the extracellular matrix // PLoS ONE. 2012. Vol. 7, no. 7. P. e41646. doi: 10.1371/journal.pone.0041646.
  16. Lazarevich I., Stasenko S., Rozhnova M., Pankratova E., Dityatev A., Kazantsev V. Activitydependent switches between dynamic regimes of extracellular matrix expression // PLoS ONE. 2020. Vol. 15, no. 1. P. e0227917. doi: 10.1371/journal.pone.0227917.
  17. Rozhnova M., Pankratova E., Stasenko S., Kazantsev V. Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix // Chaos, Solitons & Fractals. 2021. Vol. 151. P. 111253. doi: 10.1016/j.chaos.2021.111253.
  18. Stasenko S., Kazantsev V. Bursting dynamics of spiking neural network induced by active extracellular medium // Mathematics. 2023. Vol. 11, no. 9. P. 2109. doi: 10.3390/math11092109.
  19. Siegelbaum S. A., Kandel E. R. Learning-related synaptic plasticity: LTP and LTD // Current Opinion in Neurobiology. 1991. Vol. 1, no. 1. P. 113–120. doi: 10.1016/0959-4388(91)90018-3.
  20. Maffei A. The many forms and functions of long term plasticity at GABAergic synapses // Neural Plasticity. 2011. Vol. 2011. P. 254724. doi: 10.1155/2011/254724.
  21. Allene C., Lourenco J., Bacci A. The neuronal identity bias behind neocortical GABAergic plasticity // Trends in Neurosciences. 2015. Vol. 38, no. 9. P. 524–534. doi: 10.1016/j.tins. 2015.07.008.
  22. Vogels T. P., Froemke R. C., Doyon N., Gilson M., Haas J. S., Liu R., Maffei A., Miller P., Wierenga C. J., Woodin M. A. Inhibitory synaptic plasticity: Spike timing-dependence and putative network function // Frontiers in Neural Circuits. 2013. Vol. 7. P. 119. doi: 10.3389/fncir.2013.00119.
  23. Scanziani M., Hausser M. Electrophysiology in the age of light // Nature. 2009. Vol. 461. P. 930–939. doi: 10.1038/nature08540.
  24. Gaiarsa J., Caillard O., Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: Mechanisms and functional significance // Trends in Neurosciences. 2002. Vol. 25, no. 11. P. 564–570. doi: 10.1016/S0166-2236(02)02269-5.
  25. Mapelli J., Gandolfi D., Vilella A., Zoli M., Bigiani A. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors // PNAS. 2016. Vol. 113, no. 35. P. 9898–9903. doi: 10.1073/pnas.1601194113.
  26. Maffei A., Nelson S. B., Turrigiano G. G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation // Nature Neuroscience. 2004. Vol. 7. P. 1353–1359. DOI: 10.1038/ nn1351.
  27. Castillo P. E., Chiu C. Q., Carroll R. C. Long-term plasticity at inhibitory synapses // Current Opinion in Neurobiology. 2011. Vol. 21, no. 2. P. 328–338. doi: 10.1016/j.conb.2011.01.006.
  28. Ahumada J., Fernandez de Sevilla D., Couve A., Buno W., Fuenzalida M. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors // Hippocampus. 2013. Vol. 23. P. 1439–1452. doi: 10.1002/hipo.22196.
  29. Maffei A., Nataraj K., Nelson S. B., Turrigiano G. G. Potentiation of cortical inhibition by visual deprivation // Nature. 2006. Vol. 443. P. 81–84. doi: 10.1038/nature05079.
  30. Barberis A. Postsynaptic plasticity of GABAergic synapses // Neuropharmacology. 2020. Vol. 169. P. 107643. doi: 10.1016/j.neuropharm.2019.05.020.
  31. Chiu C. Q., Barberis A., Higley M. J. Preserving the balance: Diverse forms of long-term GABAergic synaptic plasticity // Nature Reviews Neuroscience. 2019. Vol. 20. P. 272–281. doi: 10.1038/s41583-019-0141-5.
  32. Lecca S., Trusel M., Mameli M. Footshock-induced plasticity of GABAB signalling in the lateral habenula requires dopamine and glucocorticoid receptors // Synapse. 2017. Vol. 71, no. 6. P. e21948. doi: 10.1002/syn.21948.
  33. Sanchez-Rodrıguez I., Gruart A., Delgado-Garcıa J. M., Jimenez-Dıaz L., Navarro-Lopez J. D. Role of GirK channels in long-term potentiation of synaptic inhibition in an in vivo mouse model of early amyloid-β pathology // International Journal of Molecular Sciences. 2019. Vol. 20, no. 5. P. 1168. doi: 10.3390/ijms20051168.
  34. Hennequin G., Agnes E. J., Vogels T. P. Inhibitory plasticity: balance, control, and codependence // Annual Review of Neuroscience. 2017. Vol. 40. P. 557–579. doi: 10.1146/annurev-neuro-072116-031005.
  35. Damour J., Froemke R. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex // Neuron. 2015. Vol. 86, no. 2. P. 514–528. doi: 10.1016/j.neuron.2015.03.014.
  36. Vickers E. D., Clark C., Osypenko D., Fratzl A., Kochubey O., Bettler B., Schneggenburger R. Parvalbumin-interneuron output synapses show spike-timing-dependent plasticity that contributes to auditory map remodeling // Neuron. 2018. Vol. 99, no. 4. P. 720–735.e6. DOI: 10.1016/j. neuron.2018.07.018.
  37. Wang L., Maffei A. Inhibitory plasticity dictates the sign of plasticity at excitatory synapses // The Journal of Neuroscience. 2014. Vol. 34, no. 4. P. 1083–1093. doi: 10.1523/JNEUROSCI.4711-13.2014.
  38. Wilmes K. A., Clopath C. Inhibitory microcircuits for top-down plasticity of sensory representations // Nature Communications. 2019. Vol. 10. P. 5055. doi: 10.1038/s41467-019-12972-2.
  39. Soloduchin S., Shamir M. Rhythmogenesis evolves as a consequence of long-term plasticity of inhibitory synapses // Scientific Reports. 2018. Vol. 8. P. 13050. doi: 10.1038/s41598-018-31412-7.
  40. Weber S. N., Sprekeler H. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity // eLife. 2018. Vol. 7. P. e34560. doi: 10.7554/eLife.34560.
  41. Gilra A., Gerstner W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network // eLife. 2017. Vol. 6. P. e28295. doi: 10.7554/eLife.28295.
  42. Luque N. R., Garrido J. A., Naveros F., Carrillo R. R., D’Angelo E., Ros E. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model // Frontiers in Computational Neuroscience. 2016. Vol. 10. P. 17. doi: 10.3389/fncom.2016.00017.
  43. Vogels T. P., Sprekeler H., Zenke F., Clopath C., Gerstner W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks // Science. 2011. Vol. 334, no. 6062. P. 1569–1573. doi: 10.1126/science.1211095.
  44. Araque A., Parpura V., Sanzgiri R., Haydon P. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons // European Journal of Neuroscience. 1998. Vol. 10, no. 6. P. 2129–2142. doi: 10.1046/j.1460-9568.1998.00221.x.
  45. Araque A., Parpura V., Sanzgiri R., Haydon P. Tripartite synapses: Glia, the unacknowledged partner // Trends in Neurosciences. 1999. Vol. 22, no. 5. P. 208–215. doi: 10.1016/S0166- 2236(98)01349-6.
  46. Haydon P. GLIA: Listening and talking to the synapse // Nature Reviews Neuroscience. 2001. Vol. 2. P. 185–193. doi: 10.1038/35058528.
  47. Nadkarni S., Jung P. Dressed neurons: Modeling neural-glial interactions // Physical Biology. 2004. Vol. 1, no. 1. P. 35–41. doi: 10.1088/1478-3967/1/1/004.
  48. Nadkarni S., Jung P. Modeling synaptic transmission of the tripartite synapse // Physical Biology. 2007. Vol. 4, no. 1. P. 1–9. doi: 10.1088/1478-3975/4/1/001.
  49. Volman V., Ben-Jacob E., Levine H. The astrocyte as a gatekeeper of synaptic information transfer // Neural Computation. 2007. Vol. 19, no. 2. P. 303–326. doi: 10.1162/neco.2007.19.2.303.
  50. De Pitta M., Volman V., Berry H., Ben-Jacob E. A tale of two stories: Astrocyte regulation of synaptic depression and facilitation // PLoS Computational Biology. 2011. Vol. 7, no. 12. P. e1002293. doi: 10.1371/journal.pcbi.1002293.
  51. Gordleeva S., Stasenko S., Semyanov A., Dityatev A., Kazantsev V. Bi-directional astrocytic regulation of neuronal activity within a network // Frontiers in Computational Neuroscience. 2012. Vol. 6. P. 92. doi: 10.3389/fncom.2012.00092.
  52. De Pitta M. Gliotransmitter exocytosis and its consequences on synaptic transmission // Computational Glioscience. 2019. P. 245–287. doi: 10.1007/978-3-030-00817-8_10.
  53. Lenk K., Satuvuori E., Lallouette J., Guevara A., Berry H., Hyttinen J. A computational model of interactions between neuronal and astrocytic networks: The role of astrocytes in the stability of the neuronal firing rate // Frontiers in Computational Neuroscience. 2020. Vol. 13. P. 92. doi: 10.3389/fncom.2019.00092.
  54. Barabash N., Levanova T., Stasenko S. STSP model with neuron-glial interaction produced bursting activity // Proceedings of the Third International Conference Neurotechnologies And Neurointerfaces (CNN). 2021. P. 12–15. doi: 10.1109/CNN53494.2021.9580314.
  55. Stasenko S., Kazantsev V. 3D model of bursting activity generation // Proceedings of the Fourth International Conference Neurotechnologies and Neurointerfaces (CNN). 2022. P. 176–179. doi: 10.1109/CNN56452.2022.9912507.
  56. Barabash N., Levanova T., Stasenko S. Rhythmogenesis in the mean field model of the neuron–glial network // The European Physical Journal Special Topics. 2023. Vol. 232. P. 1–6. DOI: 10.1140/ epjs/s11734-023-00778-9.
  57. Olenin S., Levanova T., Stasenko S. Dynamics in the Reduced Mean-Field Model of Neuron–Glial Interaction // Mathematics. 2023. Vol. 11, no. 9. P. 2143. doi: 10.3390/math11092143.
  58. Stasenko S. V., Hramov A. E., Kazantsev V. B. Loss of neuron network coherence induced by virus-infected astrocytes: A model study // Scientific Reports. 2023. Vol. 13, no. 1. P. 6401. doi: 10.1038/s41598-023-33622-0.
  59. Postnov D., Koreshkov R., Brazhe N., Brazhe A., Sosnovtseva O. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks // Journal of Biological Physics. 2009. Vol. 35. P. 425–445. doi: 10.1007/s10867-009-9156-x.
  60. De Pitta M., Brunel N. Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model // PNAS. 2022. Vol. 119, no. 43. P. e2207912119. doi: 10.1073/pnas.2207912119.
  61. Stasenko S., Kazantsev V. Astrocytes Enhance Image Representation Encoded in Spiking Neural Network // Advances in Neural Computation, Machine Learning, and Cognitive Research VI. 2022. Vol. 1064. P. 200–206. doi: 10.1007/978-3-031-19032-2_20.
  62. Stasenko S., Kazantsev V. Dynamic Image Representation in a Spiking Neural Network Supplied by Astrocytes // Mathematics. 2023. Vol. 11, no. 3. P. 561. doi: 10.3390/math11030561.
  63. Gordleeva S., Tsybina Y., Krivonosov M., Ivanchenko M., Zaikin A., Kazantsev V., Gorban A. Modeling working memory in a spiking neuron network accompanied by astrocytes // Frontiers in Cellular Neuroscience. 2021. Vol. 15. P. 631485. doi: 10.3389/fncel.2021.631485.
  64. Zimin I., Kazantsev V., Stasenko S. Artificial Neural Network Model with Astrocyte-Driven ShortTerm Memory // Biomimetics. 2023. Vol. 8, no. 5. P. 422. doi: 10.3390/biomimetics8050422.
  65. Blum Moyse L., Berry H. Modelling the modulation of cortical Up-Down state switching by astrocytes // PLoS Computational Biology. 2022. Vol. 18. P. e1010296. doi: 10.1371/journal. pcbi.1010296.
  66. Angulo M. C., Kozlov A. S., Charpak S., Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus // The Journal of Neuroscience. 2004. Vol. 24, no. 31. P. 6920–6927. doi: 10.1523/JNEUROSCI.0473-04.2004.
  67. Halassa M., Fellin T., Haydon P. Tripartite synapses: Roles for astrocytic purines in the control of synaptic physiology and behavior // Neuropharmacology. 2009. Vol. 57, no. 4. P. 343–346. doi: 10.1016/j.neuropharm.2009.06.031.
  68. Perea G., Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses // Science. 2007. Vol. 317, no. 5841. P. 1083–1086. doi: 10.1126/science.1144640.
  69. Jourdain P., Bergersen L., Bhaukaurally K., Bezzi P., Santello M., Domercq M., Matute C., Tonello F., Gundersen V., Volterra A. Glutamate exocytosis from astrocytes controls synaptic strength // Nature Neuroscience. 2007. Vol. 10. P. 331–339. doi: 10.1038/nn1849.
  70. Fiacco T., McCarthy K. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons // The Journal of Neuroscience. 2004. Vol. 24, no. 3. P. 722–732. doi: 10.1523/jneurosci.2859-03.2004.
  71. Farrant M., Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors // Nature Reviews Neuroscience. 2005. Vol. 6. P. 215–229. doi: 10.1038/nrn1625.
  72. Gu N., Jackson J., Goutagny R., Lowe G., Manseau F., Williams S. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks // The Journal of Neuroscience. 2013. Vol. 33, no. 19. P. 8276–8287. doi: 10.1523/JNEUROSCI.0179-13.2013.
  73. Teles-Grilo Ruivo L., Mellor J. Cholinergic modulation of hippocampal network function // Frontiers in Synaptic Neuroscience. 2013. Vol. 5. P. 2. doi: 10.3389/fnsyn.2013.00002.
  74. Puig M., Gulledge A. Serotonin and prefrontal cortex function: neurons, networks, and circuits // Molecular Neurobiology. 2011. Vol. 44. P. 449–464. doi: 10.1007/s12035-011-8214-0.
  75. Feldmeyer D., Egger V., Lubke J., Sakmann B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex // The Journal Of Physiology. 1999. Vol. 521, no. 1. P. 169–190. DOI: 10.1111%2Fj.1469-7793. 1999.00169.x.
  76. Isaacson J., Scanziani M. How inhibition shapes cortical activity // Neuron. 2011. Vol. 72, no. 2. P. 231–243. doi: 10.1016/j.neuron.2011.09.027.
  77. Pouille F., Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feedforward inhibition // Science. 2001. Vol. 293, no. 5532. P. 1159–1163. doi: 10.1126/science. 1060342.
  78. Galarreta M., Hestrin S. Spike transmission and synchrony detection in networks of GABAergic interneurons // Science. 2001. Vol. 292, no. 5525. P. 2295–2299. doi: 10.1126/science.1061395.
  79. Borgers C., Kopell N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity // Neural Computation. 2003. Vol. 15, no. 3. P. 509–538. DOI: 10.1162/ 089976603321192059.
  80. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence // Trends In Cognitive Sciences. 2005. Vol. 9, no. 10. P. 474–480. DOI: 10.1016/ j.tics.2005.08.011.
  81. Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P., Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors // Neuron. 2004. Vol. 43, no. 5. P. 729–743. doi: 10.1016/j.neuron.2004.08.011.
  82. Parpura V., Zorec R. Gliotransmission: Exocytotic release from astrocytes // Brain Research Reviews. 2010. Vol. 63, no. 1-2. P. 83–92. doi: 10.1016/j.brainresrev.2009.11.008.
  83. Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave // Nature Neuroscience. 2016. Vol. 19. P. 182–189. doi: 10.1038/nn.4201.
  84. MacVicar B., Newman E. Astrocyte regulation of blood flow in the brain // Cold Spring Harbor Perspectives in Biology. 2015. Vol. 7. P. a020388. doi: 10.1101/cshperspect.a020388.
  85. Perea G., Navarrete M., Araque A. Tripartite synapses: astrocytes process and control synaptic information // Trends in Neurosciences. 2009. Vol. 32, no. 8. P. 421–431. doi: 10.1016/j.tins. 2009.05.001.
  86. Navarrete M., Perea G., Sevilla D., Gomez-Gonzalo M., Nunez A., Martın E., Araque A. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity // PLoS Biology. 2012. Vol. 10. P. e1001259. doi: 10.1371/journal.pbio.1001259.
  87. Fellin T. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity // Journal Of Neurochemistry. 2009. Vol. 108, no. 3. P. 533–544. doi: 10.1111/j.1471-4159.2008.05830.x.
  88. Carmignoto G., Fellin T. Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus // Journal Of Physiology-Paris. 2006. Vol. 99, no. 2-3. P. 98–102. doi: 10.1016/j.jphysparis.2005.12.008.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>