Резонансные и нелинейные явления при распространении магнитостатических волн в мультиферроидных, полупроводниковых и металлизированных структурах на основе ферромагнитных плёнок и магнонных кристаллов

Обложка

Цитировать

Полный текст

Аннотация

Целью данной работы является составление обзора нового и плодотворного научного направления в магнонике, которое выросло из работ доктора физико-математических наук, профессора Юрия Павловича Шараевского и связано с исследованиями резонансных и нелинейных явлений при распространении магнитостатических волн в ферромагнитных плёнках, ферромагнитных плёнках с периодическими неоднородностями (магнонных кристаллах), связанных (слоистых и латеральных) ферромагнитных структурах, а также ферромагнитных структурах со слоями другой физической природы (полупроводниковыми, сегнетоэлектрическими, пьезоэлектрическими, слоями нормального металла). Методы. Использованы экспериментальные и теоретические методы исследования спин-волновых возбуждений в широком классе структур с ферромагнитными слоями. В частности, экспериментальные радиофизические методы СВЧ-измерений и оптические методы мандельштам-бриллюэновской спектроскопии. Для построения теоретических моделей использованы: метод связанных волн, метод сшивания магнитных проницаемостей на границах слоёв, метод матриц передачи, длинноволновое приближение. Результаты. Представленные результаты имеют общенаучное значение для понимания основных закономерностей совместного влияния связи, периодичности и взаимодействий разной физической природы (влияние на магнитостатическую волну деформации в периодических структурах с пьезоэлектриком, электромагнитной волны в структурах с сегнетоэлектриком, электрического тока в структурах с полупроводником, спинового тока в структурах с нормальным металлом). В прикладном плане выявленные эффекты открывают широкие возможности для создания новых устройств спин-волновой электроники с возможностью динамического управления характеристиками при изменении электрического и магнитного поля, а также мощности входного сигнала. Выводы. Приведен обзор наиболее интересных результатов, полученных авторами совместно с Юрием Павловичем Шараевским и являющихся идейным продолжением заложенных им основ.

Об авторах

Мария Александровна Морозова

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

410012, Россия, Саратов, ул. Астраханская, 83

Олег Валерьевич Матвеев

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

410012, Россия, Саратов, ул. Астраханская, 83

Список литературы

  1. Вашковский А. В., Стальмахов В. С., Шараевский Ю. П. Магнитостатические волны в электронике СВЧ. Саратов: Издательство Саратовского университета, 1993. 312 с.
  2. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.: Наука, 1994. 464 с.
  3. Barman A., Gubbiotti G., Ladak S. etal. The 2021 magnonics roadmap // J. Phys. Condens. Matter. 2021. Vol. 33, no. 41. P. 413001. doi: 10.1088/1361-648X/abec1a.
  4. Никитов С. А., Калябин Д. В., Лисенков И. В., Славин А. Н., Барабаненков Ю. Н., Осокин С. А., Садовников А. В., Бегинин Е. Н., Морозова М. А., Шараевский Ю. П., Филимонов Ю. А., Хивинцев Ю. В., Высоцкий С. Л., Сахаров В. К., Павлов Е. С. Магноника - новое направление спинтроники и спин-волновой электроники // УФН. 2015. Т. 185, № 10. С. 1099-1128. doi: 10.3367/UFNr.0185.201510m.1099.
  5. Никитов С. А., Сафин А. Р., Калябин Д. В., Садовников А. В., Бегинин Е. Н., Логунов М. В., Морозова М. А., Одинцов С. А., Осокин С. А., Шараевская А.Ю., Шараевский Ю. П., Кирилюк А. И. Диэлектрическая магноника - от гигагерцев к терагерцам // УФН. 2020. Т. 190, № 10. С. 1009-1040. doi: 10.3367/UFNr.2019.07.038609.
  6. Гуляев Ю. В., Никитов С. А. Магнонные кристаллы - спиновые волны в периодических структурах // Доклады Академии наук. 2001. Т. 380, № 4. С. 469-471.
  7. Chumak A. V., Vasyuchka V. I., Serga A. A., Hillebrands B. Magnon spintronics // Nature Physics. 2015. Vol. 11, no. 6. P. 453-461. doi: 10.1038/nphys3347.
  8. Krawczyk M., Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure // J. Phys. Condens. Matter. 2014. Vol. 26, no. 12. P. 123202. doi: 10.1088/0953-8984/26/12/123202.
  9. Шараевский Ю. П., Морозова М. А., Гришин С. В. Магнитостатические волны в электронике СВЧ // В кн.: Методы нелинейной динамики и теории хаоса в задачах электроники сверхвысоких частот. Т. 2. Нестационарные и хаотические процессы / под ред. Трубецкова Д. И., Храмова А. Е., Короновского А. А. Гл. 11. М.: Физматлит, 2009. С. 348-379.
  10. Chumak A. V., Serga A. A., Hillebrands B. Magnonic crystals for data processing // J. Phys. D. Appl. Phys. 2017. Vol. 50, no. 24. P. 244001. doi: 10.1088/1361-6463/aa6a65.
  11. Ustinov A. B., Drozdovskii A. V., Kalinikos B. A. Multifunctional nonlinear magnonic devices for microwave signal processing // Appl. Phys. Lett. 2010. Vol. 96, no. 14. P. 142513. DOI: 10.1063/ 1.3386540.
  12. Sharaevsky Y. P., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sheshukova S. E., Sharaevskaya A. Y., Grishin S. V., Romanenko V., Nikitov S. A. Coupled spin waves in magnonic waveguides // In: Demokritov S. O. (ed) Spin Wave Confinement: Propagating Waves. 2nd ed. Ch. 2. New York: CRC Press, 2017. P. 47-76. doi: 10.1201/9781315110820-3.
  13. Khitun A., Bao M., Wang K. L. Magnonic logic circuits // J. Phys. D. Appl. Phys. 2010. Vol. 43, no. 26. P. 264005. doi: 10.1088/0022-3727/43/26/264005.
  14. Nikitin A. A., Nikitin A. A., Kondrashov A. V., Ustinov A. B., Kalinikos B. A., Lahderanta E. Theory of dual-tunable thin-film multiferroic magnonic crystal // J. Appl. Phys. 2017. Vol. 122, no. 15. P. 153903. doi: 10.1063/1.5000806.
  15. Бухараев A. А., Звездин А. К., Пятаков А. П., Фетисов Ю. К. Стрейнтроника - новое направление микро- и наноэлектроники и науки о материалах // УФН. 2018. Т. 188, № 12. С. 1288-1330. doi: 10.3367/UFNr.2018.01.038279.
  16. Гуляев Ю. В., Никитов С. А. Распространение поверхностных магнитостатических волн в пленках феррита с периодической полупроводниковой структурой // ФТТ. 1983. Т. 25, № 8. С. 2515-2517.
  17. Sidorenko A. Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures. Cham: Springer, 2018. 270 p. doi: 10.1007/978-3-319-90481-8.
  18. Zhou Y., Jiao H., Chen Y.-T., Bauer G. E. W., Xiao J. Current-induced spin-wave excitation in Pt/YIG bilayer // Phys. Rev. B. 2013. Vol. 88, no. 18. P. 184403. doi: 10.1103/PhysRevB.88.184403.
  19. Wang Q., Pirro P., Verba R., Slavin A., Hillebrands B., Chumak A. V. Reconfigurable nanoscale spin-wave directional coupler // Science Advances. 2018. Vol. 4, no. 1. P. e1701517. doi: 10.1126/sciadv. 1701517.
  20. Морозова М. А., Шараевский Ю. П., Шешукова С. Е., Жаманова М. К. Исследование эффектов самовоздействия магнитостатических волн в ферромагнитной структуре на основе системы уравнений Шредингера с когерентной или некогерентной связью // ФТТ. 2012. Т. 54, № 8. С. 1478-1486.
  21. Бегинин Е. Н., Морозова М. А., Шараевский Ю. П. Нелинейные эффекты самовоздействия волн в 2D-связанных ферромагнитных структурах // ФТТ. 2010. Т. 52, № 1. С. 76-82.
  22. Шараевский Ю. П., Малюгина М. А., Яровая Е. В. Модуляционная неустойчивость поверхностных магнитостатических волн в структурах типа ферромагнетик-диэлектрик- ферромагнетик // Письма в ЖТФ. 2006. Т. 32, № 3. С. 33-39.
  23. Morozova M. A., Romanenko D. V., Matveev O. V., Grishin S. V., Sharaevskii Y. P., Nikitov S. A. Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films // J. Magn. Magn. Mater. 2018. Vol. 466. P. 119-124. doi: 10.1016/j.jmmm.2018.06.077.
  24. Nikitov S. A., Tailhades P., Tsai C. S. Spin waves in periodic magnetic structures-magnonic crystals // J. Magn. Magn. Mater. 2001. Vol. 236, no. 3. P. 320-330. doi: 10.1016/S0304- 8853(01)00470-X.
  25. Букесов С. А., Стальмахов В. С., Шараевский Ю. П. Поверхностные магнитостатические волны в структуре с периодическими границами // Тез. Докл. III Всесоюзной школы - семинара «Спинволновая электроника СВЧ». Краснодар, 1987. С. 31-32.
  26. Морозова М. А., Шараевский Ю. П., Шешукова С. Е. Механизмы формирования солитонов огибающей в периодических ферромагнитных структурах // Известия вузов. ПНД. 2010. Т. 18, № 5. С. 111-120. doi: 10.18500/0869-6632-2010-18-5-111-120.
  27. Morozova M. A., Sadovnikov A. V., Matveev O. V., Sharaevskaya A. Y., Sharaevskii Y. P., Nikitov S. A. Band structure formation in magnonic Bragg gratings superlattice // J. Phys. D. Appl. Phys. 2020. Vol. 53, no. 39. P. 395002. doi: 10.1088/1361-6463/ab95c0.
  28. Morozova M. A., Matveev O. V., Sharaevskii Y. P., Nikitov S. A., Sadovnikov A. V. Nonlinear signal processing with magnonic superlattice with two periods // Appl. Phys. Lett. 2022. Vol. 120, no. 12. P. 122407. doi: 10.1063/5.0083133.
  29. Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Band gap control in a line-defect magnonic crystal waveguide // Appl. Phys. Lett. 2015. Vol. 107, no. 24. P. 242402. doi: 10.1063/1.4937440.
  30. Morozova M. A., Sharaevskaya A. Y., Sadovnikov A. V., Grishin S. V., Romanenko D. V., Beginin E. N., Sharaevskii Y. P., Nikitov S. A. Band gap formation and control in coupled periodic ferromagnetic structures // J. Appl. Phys. 2016. Vol. 120, no. 22. P. 223901. doi: 10.1063/1.4971410.
  31. Morozova M. A., Grishin S. V., Sadovnikov A. V., Sharaevskii Y. P., Nikitov S. A. Magnonic bandgap control in coupled magnonic crystals // IEEE Trans. Magn. 2014. Vol. 50, no. 11. P. 4007204. doi: 10.1109/TMAG.2014.2321611.
  32. Морозова М. А., Матвеев О. В., Шараевский Ю. П. Распространение импульсов в нелинейной системе на основе связанных магнонных кристаллов // ФТТ. 2016. Т. 58, № 10. С. 1899-1906.
  33. Morozova M.A., Matveev O.V., Romanenko D.V., Trukhanov A.V., Mednikov A.M., Sharaevskii Y.P., Nikitov S.A. Nonlinear spin wave switches in layered structure based on magnonic crystals // J. Magn. Magn. Mater. 2020. Vol. 508. P. 166836. doi: 10.1016/j.jmmm.2020.166836.
  34. Прокушкин В. Н., Шараевский Ю. П. Поверхностные магнитостатические волны в ферритовой структуре с импедансными границами // Радиотехника и электроника. 1987. Т. 32, № 8. С. 1750-1752.
  35. Прокушкин В. Н., Шараевский Ю. П. Влияние реактивной импедансной нагрузки на характеристики магнитостатических волн // Радиотехника и электроника. 1993. Т. 38, № 9. С. 1551-1553.
  36. Morozova M. A., Romanenko D. V., Serdobintsev A. A., Matveev O. V., Sharaevskii Y. P., Nikitov S. A. Magnonic crystal-semiconductor heterostructure: Double electric and magnetic fields control of spin waves properties // J. Magn. Magn. Mater. 2020. Vol. 514. P. 167202. doi: 10.1016/j.jmmm. 2020.167202.
  37. Матвеев О. В., Романенко Д. В., Морозова М. А. Линейные и нелинейные эффекты в структурах на основе магнонных кристаллов и полупроводников // Письма в ЖЭТФ. 2022. Т. 115, № 5-6. С. 379-383. doi: 10.31857/S1234567822060052.
  38. Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Tunable bandgaps in layered structure magnonic crystal-ferroelectric // IEEE Trans. Magn. 2015. Vol. 51, no. 11. P. 2802504. doi: 10.1109/TMAG.2015.2446763.
  39. Морозова М. А., Матвеев О. В., Шараевский Ю. П., Никитов С. А. Управление запрещенными зонами в слоистой структуре магнонный кристалл-сегнетоэлектрик-магнонный кристалл // ФТТ. 2016. Т. 58, № 2. С. 266-272.
  40. Grachev A. A., Matveev O. V., Mruczkiewicz M., Morozova M. A., Beginin E. N., Sheshukova S. E., Sadovnikov A. V. Strain-mediated tunability of spin-wave spectra in the adjacent magnonic crystal stripes with piezoelectric layer // Appl. Phys. Lett. 2021. Vol. 118, no. 26. P. 262405. doi: 10.1063/5.0051429.
  41. Морозова М. А., Матвеев О. В., Романенко Д. В., Шараевский Ю. П., Никитов С. А. Устройство на магнитостатических волнах для пространственного разделения СВЧ-сигналов разного уровня мощности. Патент № 2702916 С1 Российская Федерация, МПК H01P 1/22 : заявл. 07.05.2019 : опубл. 14.10.2019. Заявитель: ИРЭ им. В. А. Котельникова РАН. 13 с.
  42. Бегинин Е. Н., Садовников А. В., Попов П. А., Шараевская А.Ю., Калябин Д. В., Стогний А. И., Морозова М. А., Никитов С. А. Функциональный компонент магноники на многослойной ферромагнитной структуре. Патент № 2702915 С1 Российская Федерация, МПК H01P 1/218 : заявл. 25.01.2019 : опубл. 14.10.2019. Заявитель: ИРЭ им В. А. Котельникова РАН. 11 с.
  43. Морозова М. А., Матвеев О. В., Романенко Д. В., Медников А. М. Наноразмерные мультиферроики для применения в магнонной нейроморфной архитектуре // Наноиндустрия. 2021. Т. 14, № S7(107). С. 685-687. doi: 10.22184/1993-8578.2021.14.7s.685.687.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».