A method for constructing a complete bifurcation picture of a boundary value problem for nonlinear partial differential equations: application of the Kolmogorov-Arnold theorem
- Authors: Gromov V.A.1, Tomashchuk K.K.1, Beschastnov Y.N.1, Sidorenko A.A.1, Kakurin V.V.1
-
Affiliations:
- National Research University "Higher School of Economics"
- Issue: Vol 33, No 4 (2025)
- Pages: 435-465
- Section: Bifurcation in dynamical systems. Deterministic chaos. Quantum chaos
- URL: https://journals.rcsi.science/0869-6632/article/view/358002
- DOI: https://doi.org/10.18500/0869-6632-003160
- EDN: https://elibrary.ru/NXMRAP
- ID: 358002
Cite item
Full Text
Abstract
About the authors
Vasily Alexandrovich Gromov
National Research University "Higher School of Economics"
ORCID iD: 0000-0001-5891-6597
Scopus Author ID: 35228959300
ResearcherId: M-6614-2015
ul. Myasnitskaya 20, Moscow, 101000, Russia
Korney Kirillovich Tomashchuk
National Research University "Higher School of Economics"ul. Myasnitskaya 20, Moscow, 101000, Russia
Yury Nikolaevich Beschastnov
National Research University "Higher School of Economics"
ORCID iD: 0000-0001-6511-5894
ul. Myasnitskaya 20, Moscow, 101000, Russia
Artem Aleksandrovich Sidorenko
National Research University "Higher School of Economics"ul. Myasnitskaya 20, Moscow, 101000, Russia
Vasily Vladimirovich Kakurin
National Research University "Higher School of Economics"
ORCID iD: 0009-0004-3660-871X
ul. Myasnitskaya 20, Moscow, 101000, Russia
References
- Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений: Монодромия и асимптотики интегралов. M.: Наукa, 1984. 355 c.
- Гилмор Р. Прикладная теория катастроф: в 2 т. М.: Мир. Т. 1. 1984. 350 c. T. 2. 1984. 286 c.
- Gilmore R. Catastrophe theory // In: Trigg G. L. (ed) Encyclopedia of Applied Physics. Vol. 3. N.Y.: Wiley, 1992. P. 85–115.
- Obodan N. I., Gromov V. A. Numerical analysis of the branching of solutions to nonlinear equations for cylindrical shells // Int. Appl. Mech. 2006. Vol. 42. P. 90–97. doi: 10.1007/s10778-006-0062-7.
- Obodan N. I., Lebedeyev O. G., Gromov V. A. Nonlinear Behaviour and Stability of Thin-Walled Shells. Berlin: Springer, 2013. 178 p. doi: 10.1007/978-94-007-6365-4.
- Obodan N. I., Adlucky V. J., Gromov V. A. Rapid identification of pre-buckling states: a case of cylindrical shell // Thin-Walled Structures. 2018. Vol. 124. P. 449–457. doi: 10.1016/j.tws. 2017.12.034.
- Obodan N. I., Adlucky V. J., Gromov V. A. Prediction and control of buckling: the inverse bifurcation problems for von Karman equations // In: Dutta H., Peters J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Cham: Springer, 2020. P. 353–381. doi: 10.1007/978-3-319- 99918-0_11.
- Obodan N. I., Gromov V. A. The complete bifurcation structure of nonlinear boundary problem for cylindrical panel subjected to uniform external pressure // Thin-Walled Structures. 2016. Vol. 107. P. 612–619. doi: 10.1016/j.tws.2016.07.020.
- Obodan N. I., Gromov V. A. Nonlinear behavior and buckling of cylindrical shells subjected to localized external pressure // Journal of Engineering Mathematics. 2013. Vol. 78. P. 239–248. doi: 10.1007/s10665-012-9553-1.
- Antman S. S. Bifurcation Theory and Nonlinear Eigenvalue Problems. San Francisco: WA Benjamin, 1969. 434 p.
- Kantorovich L. V. Approximate Methods of Higher Analysis. N.Y.: Interscience Publishers, 1958. 681 p.
- Awrejcewicz J., Krysko-Jr. V. A., Kalutsky L. A., Zhigalov M. V., Krysko V. A. Review of the methods of transition from partial to ordinary differential equations: From macro- to nano-structural dynamics // Arch. Computat. Methods Eng. 2021. Vol. 28. P. 4781–4813. doi: 10.1007/s11831- 021-09550-5.
- Gromov V. A. On an approach to solve nonlinear elliptic equations of von Karman type // Вiсник Днiпропетровського унiверситету Серiя Моделювання. 2017. Т. 25, № 8. С. 122–141. doi: 10.15421/141707.
- Gromov V. A. Postcritical Behaviour and Solution Branching for the Cylindrical Shell Theory Nonlinear Problems. PHD Thesis. Dnepropetrovsk: Dnepropetrovsk State University, 2006.
- Колмогоров A. Н. О представлении непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных // Докл. АН СССР. 1957. Т. 108. С. 179–182.
- Maiorov V., Pinkus A. Lower bounds for approximation by MLP neural networks // Neurocomputing. 1999. Vol. 25, iss. 1–3. P. 81–91. doi: 10.1016/S0925-2312(98)00111-8.
- Sprecher D. A. A numerical implementation of Kolmogorov’s superpositions // Neural Netw. 1996. Vol. 9, no. 5. P. 765–772. doi: 10.1016/0893-6080(95)00081-x.
- Sprecher D. A. A numerical implementation of Kolmogorov’s superpositions II // Neural Netw. 1997. Vol. 10, no. 3. P. 447–457. doi: 10.1016/s0893-6080(96)00073-1.
- Shapiro H. S. Topics in Approximation Theory. Berlin: Springer, 1971. 278 p. DOI: 10.1007/ BFb0058976.
- Doss R. Representations of continuous functions of several variables // American Journal of Mathematics. 1976. Vol. 98, no. 2. P. 375–383. doi: 10.2307/2373891.
- Витушкин А. Г. О многомерных вариациях. M.: Гостехиздат, 1955. 220 с.
- Bratu G. Sur les equations integrales non lineaires // Bulletin de la Soci et e Math ematique de France. 1914. Vol. 42. P. 113–142. doi: 10.24033/bsmf.943.
- Koppen M. On the training of a Kolmogorov network // In: Dorronsoro J. R. (ed) Artificial Neural Networks – ICANN 2002. Lecture Notes in Computer Science, vol. 2415. Berlin: Springer, 2002. P. 474–479. doi: 10.1007/3-540-46084-5_77.
- Actor J. Computation for the Kolmogorov Superposition Theorem. PhD Thesis. Houston: Rice University, 2018. 148 p.
- Liu Z., Wang Y., Vaidya S., Ruehle F., Halverson J., Soljaci c M., Hou T. Y., Tegmark M. KAN: Kolmogorov-Arnold networks // arXiv:2404.19756. ArXiv Preprint, 2024. DOI: 10.48550/ arXiv.2404.19756.
- Lorentz G. G. Approximation of Functions. New York: Holt, Rinehart and Winston, 1966. 188 p.
- Nguyen V. P., Rabczuk T., Bordas S., Duflot M. Meshless methods: A review and computer implementation aspects // Mathematics and Computers in Simulation. 2008. Vol. 79, iss. 3. P. 763–813. doi: 10.1016/j.matcom.2008.01.003.
- Железко И. П., Ободан Н. И. Вторичные ветвления и закритическое поведение тонкостенных оболочек при неоднородной деформации // ПММ. 1997. Т. 61, № 2. С. 344–349.
- Poston T., Stewart I. Catastrophe Theory and Its Applications. Gloucester: Courier Corporation, 2014. 512 p.
- Gromov V. A., Borisenko E. A. Predictive clustering on non-successive observations for multi-step ahead chaotic time series prediction // Neural Comput. Applic. 2015. Vol. 26. P. 1827–1838. doi: 10.1007/s00521-015-1845-8.
- Андреев Л. В., Ободан Н. И., Лебедев A. Г. Устойчивость оболочек при неосесимметричной деформации. М.: Наука, 1988. 208 с.
- Фомин С., Алексеев В., Тихомиров В. Оптимальное управление. М.: Физматлит, 2005. 385 с.
- Odejide S. A., Aregbesola Y. A. S. A note on two dimensional Bratu problem // Kragujevac Journal of Mathematics. 2006. Vol. 29. P. 49–56.
- Temimi H., Ben-Romdhane M., Baccouch M., Musa M. O. A two-branched numerical solution of the two-dimensional Bratu’s problem // Applied Numerical Mathematics. 2020. Vol. 153. P. 202–216. doi: 10.1016/j.apnum.2020.02.010.
- Boyd J. P. An analytical and numerical study of the two-dimensional Bratu equation // J. Sci. Comput. 1986. Vol. 1. P. 183–206. doi: 10.1007/BF01061392.
- Витушкин A. Г., Хенкин Г. M. Линейные суперпозиции функций // УМН. 1967. Т. 22, № 1. С. 77–124.
- Gromov V. A. Catastrophes of cylindrical shell // In: Dutta H. (ed) Mathematical Modelling: Principle and Theory. Providence: American Mathematical Society, 2023. P. 215–244. DOI:10.1090/ conm/786/15798.
- Courant R., Hilbert D. Methods of Mathematical Physics. Vol. 1. N.Y.: Wiley, 2008. 575 p.
- Вайнберг М. М., Треногин В. А. Теория ветвления решений нелинейных уравнений. М.: Наука, 1969. 527 с.
- Agapov M. S., Kuznetsov E. B., Shalashilin V. I. Numerical modeling of the problem of strong nonlinear deformation in Eulerian coordinates // Math. Models Comput. Simul. 2009. Vol. 1. P. 263–273. doi: 10.1134/S2070048209020094.
Supplementary files


