Periodic regimes in a hybrid dynamical predator-prey system with migration and intraspecific competition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The goal of the paper is to construct and analyze a hybrid model describing patch biocommunity dynamics with variable structure interspecific interactions. Species interaction structure variations are implied by predator’s population migration from a patch caused by food resources lack and patch colonization in a case of its sufficient amount. Methods. The model is presented by a three dimensional nonlinear hybrid system consisting of three dynamical subsystems. Switchings between subsystems are regulated by a patch food attractivity value the notion of which was introduced by one of the authors. Due to a food attractivity usage the system possesses a memory because of which variations of interactions’ structure obtain inertia typical for ecological processes. Results.The following regimes of patch biocommunity are introduced: interspecific interaction, predator’s migration and prey’s dynamics in the absence of predators. Symbolic dynamics corresponding to patch regimes variations is investigated. Results delivering conditions of existence of periodic trajectories in a hybrid system, as well as periodic symbolic regime sequences, are obtained. A bifurcation value of a parameter characterized predator’s resource requirements is determined. Numerical example is given. Conclusion. On the basis of obtained results concerning periodic symbolic regime sequences, expressed via system parameters relations, it is possible to predict a predator population migration from a patch and its recolonization. Moreover, appears a possibility to estimate time periods of recolonization processes which is an important practical problem in ecology.

Авторлар туралы

Alexander Kirillov

Карельский научный центр РАН

ул. Пушкинская, д.11

Alexander Sazonov

Карельский научный центр РАН

ORCID iD: 0009-0006-4385-5422
Scopus Author ID: 57210996914
ул. Пушкинская, д.11

Әдебиет тізімі

  1. Metapopulation Biology: Ecology, Genetics, and Evolution / ed. by I. A. Hanski, M. E. Gilpin. New York: Academic Press, 1997. 512 p. doi: 10.1016/B978-0-12-323445-2.X5000-7.
  2. Dang Q. A., Hoang M. T. Complete global stability of a metapopulation model and its dynamically consistent discrete models // Qual. Theory Dyn. Syst. 2019. Vol. 18. P. 461–475. doi: 10.1007/s12346-018-0295-y.
  3. Crawford B., Kribs-Zaleta C. A metapopulation model for sylvatic T. cruzi transmission with vector migration // Mathematical Biosciences and Engineering. 2014. Vol. 11, iss. 3. P. 471–509. doi: 10.3934/mbe.2014.11.471.
  4. Arino J., Ducrot A., Zongo P. A metapopulation model for malaria with transmission-blocking partial immunity in hosts // J. Mathematical Biology. 2012. Vol. 64. P. 423–448. doi: 10.1007/s00285-011-0418-4.
  5. Feng Z., Swihart R., Yi Y., Zhu H. Coexistence in a metapopulation model with explicit local dynamics // Mathematical Biosciences and Engineering. 2004. Vol. 1, iss. 1. P. 131–145. doi: 10.3934/mbe.2004.1.131.
  6. Xu D., Feng Z., Allen L. J. S., Swihart R. K. A spatially structured metapopulation model with patch dynamics // Journal of Theoretical Biology. 2006. Vol. 239, iss. 4. P. 469–481. doi: 10.1016/j.jtbi.2005.08.012.
  7. Diekmann O., Gyllenberg M., Metz J. A. J., Nakaoka S., de Roos A. M. Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example // J. Mathematical Biology. 2010. Vol. 61. P. 277–318. doi: 10.1007/s00285-009-0299-y.
  8. Matveev A. S., Savkin A. V. Qualitative Theory of Hybrid Dynamical Systems. Boston: Birkhauser, 2000. 348 p. doi: 10.1007/978-1-4612-1364-2.
  9. Liberzon D. Switching in Systems and Control. Boston: Birkhauser, 2003. 233 p. doi: 10.1007/978-1-4612-0017-8.
  10. Кириллов А. Н. Динамические системы с переменной структурой и размерностью // Известия вузов. Приборостроение. 2009. Т. 52, № 3. С. 23–28.
  11. Bolzoni L., Della Marca R., Groppi M., Gragnani A. Dynamics of a metapopulation epidemic model with localized culling // Discrete and Continuous Dynamical Systems - B. 2020. Vol. 25, iss. 6. P. 2307—2330. doi: 10.3934/dcdsb.2020036.
  12. Кириллов А. Н. Экологические системы с переменной размерностью // Обозрение прикладной и промышленной математики. 1999. Т. 26, № 2. С. 318–336.
  13. Gokce A. The influence of past in a population system involving intraspecific competition and Allee effect // The European Physical Journal Plus. 2022. Vol. 137, no. 200. P. 1–11. doi: 10.1140/epjp/s13360-022-02425-z.
  14. Chen X., Huang L. A Filippov system describing the effect of prey refuge use on a ratio-dependent predator–prey model // Journal of Mathematical Analysis and Applications. 2015. Vol. 428, iss. 2. P. 817–837. doi: 10.1016/j.jmaa.2015.03.045.
  15. Филиппов А. Ф. Дифференциальные уравнения с разрывной правой частью. М.: Наука, 1985. 225 с.
  16. Кириллов А. Н., Иванова А. С. Периодический и квазипериодический процессы управления в задаче сохранения видового состава биосообщества // Труды Карельского научного центра РАН. Сер. Математическое моделирование и информационные технологии. 2015. № 10. С. 99–106. doi: 10.17076/mat148.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).