Dynamics of interacting SIRS+V models of infectious disease spread

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is study of processes of spread of infectious diseases in metapopulations interacted through spontaneous migration. The method is based on theoretical examination of the structure of the phase space of a system of coupled ODEs and numerical study of the transient processes in dependence on the coupling between subsystems. Results. A model of interacting populations in the form of two identical SIRS+V systems with mutual diffusion coupling is proposed and investigated. It was found that the long-term dynamics of the metapopulation does not differ from the behavior of an individual population; however, its transitional dynamics may be different and significantly depends on the values of the migration coefficients of infected and healthy individuals. In particular, under certain conditions, a complete suppression of infection waves can be observed in a secondarily infected population. Discussion. Despite the extreme simplicity of the model and the observed regimes, the results may be interesting from the point of view of practical recommendations for planning a strategy to combat transmission between communities, since they reveal the influence of the intensity of migrations of sick and healthy individuals on the spread of the epidemic in metapopulations.  

About the authors

Aleksej Vladimirovich Shabunin

Saratov State University

ORCID iD: 0000-0002-3495-9418
Scopus Author ID: 56186157400
ResearcherId: C-7305-2013
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Hamer W. H. The Milroy Lectures on Epidemic Disease in England — The Evidence of Variability and Persistence of Type // The Lancet. 1906. Vol. 1. P. 733–739.
  2. Ross R. An application of the theory of probabilities to the study of a priori pathometry. – Part I // Proc. R. Soc. Lond. A. 1916. Vol. 92, iss. 638. P. 204–230. doi: 10.1098/rspa.1916.0007.
  3. Ross R. An application of the theory of probabilities to the study of a priori pathometry. – Part II // Proc. R. Soc. Lond. A. 1917. Vol. 93, iss. 650. P. 212–225. doi: 10.1098/rspa.1917.0014.
  4. Ross R., Hudson H. An application of the theory of probabilities to the study of a priori pathometry. – Part III // Proc. R. Soc. Lond. A. 1917. Vol. 93, iss. 650. P. 225–240. doi: 10.1098/rspa.1917.0015.
  5. Бейли Н. Математика в биологии и медицине. М.: Мир, 1970. 326 с
  6. Марчук Г. И. Математические модели в иммунологии. Вычислительные методы и эксперименты. Москва: Наука, 1991. 276 c.
  7. Hethcote H. W. The mathematics of infectious diseases // SIAM Review. 2000. Vol. 42, no. 4. P. 599–653. doi: 10.1137/S0036144500371907.
  8. Андерсон Р., Мэй Р. Инфекционные болезни человека. Динамика и контроль. М.: Мир, 2004. 784 c.
  9. Kermack W., McKendrick A. A contribution to the mathematical theory of epidemics // Proc. R. Soc. Lond. A. 1927. Vol. 115. P. 700–721. doi: 10.1098/RSPA.1927.0118.
  10. Шабунин А. В. Гибридная SIRS-модель распространения инфекций // Известия вузов. ПНД. 2022. T. 30, № 6. С. 717–731. doi: 10.18500/0869-6632-003014.
  11. Шабунин А. В. Пространственная и временная динамика возникновения эпидемий в гибридной SIRS+V модели клеточных автоматов // Известия вузов. ПНД. 2023. T. 31, № 3. С. 271–285. doi: 10.18500/0869- 6632-003042.
  12. Логофет Д. О. Способна ли миграция стабилизировать экосистему? (Математический аспект) // Журнал общей биологии. 1978. Т. 39. С. 123–129.
  13. Фрисман Е. Я. О механизме сохранения неравномерности в пространственном распределении особей // В кн: Математическое моделирование в экологии: Материалы III школы по мат. моделированию слож. биол. систем. М.: Наука, 1978. С. 145–153.
  14. Frisman E. Ya. Differences in densities of individuals in population with uniform range // Ecol. Modelling. 1980. Vol. 8, no. 3. P. 345–354. doi: 10.1016/0304-3800(80)90046-0.
  15. Cressman R., Krivan V. Migration dynamics for the ideal free distribution // Amer. Natur. 2006. Vol. 168, no. 3. P. 384–987. doi: 10.1086/506970.
  16. Kritzer J., Sale P. Marine Metapopulations. New York: Academic Press, 2006. 544 c.
  17. Allen J. P. Mathematical models of species interactions in time and space // Amer. Natur. 1975. Vol. 109, no. 967. P. 319–342. doi: 10.1086/283000.
  18. Udwadia F. E., Raju N. Dynamics of coupled nonlinear maps and its application to ecological modeling // Appl. Math. Comp. 1997. Vol. 82, iss. 2–3. P. 137–179. doi: 10.1016/S0096-3003(96)00027-6.
  19. Wysham D. B., Hastings A. Sudden Shift Ecological Systems: Intermittency and Transients in the Coupled Riker Population Model // Bull. Math. Biol. 2008. Vol. 70. P. 1013–1031. doi: 10.1007/S11538-007-9288-8.
  20. Кулаков М. П., Неверова Г. П., Фрисман Е. Я. Мультистабильность в моделях динамики миграционно-связанных популяций с возрастной структурой // Нелинейная динамика. 2014. Т. 10. С. 407–425.
  21. Кулаков М. П., Фрисман Е. Я. Кластеризация и химеры в модели пространственно-временной динамики популяций с возрастной структурой // Нелинейная динамика. 2018. Т. 14. С. 13–31.
  22. Mukherjee D. Persistence aspect of a predator-prey model with disease in the prey // Journal of Biological Systems. 2003. Vol. 11, no. 1. P. 101–112. doi: 10.1142/S0218339003000634.
  23. Das K. P. A study of harvesting in a predator-prey model with disease in both populations // Mathematical Methods in the Applied Sciences. 2016. Vol. 39. P. 2853–2870. doi: 10.1002/mma.3735.
  24. Biswas S., Saifuddin M., Sasmal S. K., Samanta S., Pal N., Ababneh F., Chattopadhyay J. A delayed prey-predator system with prey subject to the strong Allee effect and disease // Nonlinear Dynamics. 2016. Vol. 3. P. 1569–1594. doi: 10.1007/s11071-015-2589-9.
  25. Kant S., Kumar V. Stability analysis of predator-prey system with migrating prey and disease infection in both species // Applied Mathematical Modelling. 2017. Vol. 42. P. 509–539. doi: 10.1016/j.apm.2016.10.003.
  26. Ambrosio B., Aziz-Alaoui M. A. On a coupled time-dependent SIR models fitting with New York and New-Jersey states COVID-19 data // Biology. 2020. Vol. 9, no. 6. P. 135. doi: 10.3390/biology9060135.
  27. Шабунин А. В. Синхронизация процессов распространения инфекций во взаимодействующих популяциях: Моделирование решетками клеточных автоматов // Известия вузов. ПНД. 2020. T. 28, № 4. С. 383–396. doi: 10.18500/0869-6632-2020-28-4-383-396.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».