Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability
- 作者: Khramenkov V.A.1, Dmitrichev A.S.1, Nekorkin V.I.1,2
-
隶属关系:
- Institute of Applied Physics of the Russian Academy of Sciences
- Lobachevsky State University of Nizhny Novgorod
- 期: 卷 33, 编号 1 (2025)
- 页面: 38-68
- 栏目: Applied problems of nonlinear oscillation and wave theory
- URL: https://journals.rcsi.science/0869-6632/article/view/278985
- DOI: https://doi.org/10.18500/0869-6632-003128
- EDN: https://elibrary.ru/FDJOOM
- ID: 278985
如何引用文章
全文:
详细
作者简介
Vladislav Khramenkov
Institute of Applied Physics of the Russian Academy of Sciences
ORCID iD: 0000-0001-7165-830X
ul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia
Aleksej Dmitrichev
Institute of Applied Physics of the Russian Academy of Sciences
ORCID iD: 0000-0002-6142-3555
Scopus 作者 ID: 24179438800
Researcher ID: AAN-4890-2020
ul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia
Vladimir Nekorkin
Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod
ORCID iD: 0000-0003-0173-587X
Scopus 作者 ID: 7004468484
Researcher ID: H-4014-2016
ul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia
参考
- Жданов П. С. Вопросы устойчивости электрических систем. М.: Энергия, 1979. 456 с.
- Веников В. А. Переходные электромеханические процессы в электрических системах. М.: Высшая школа, 1985. 536 c.
- Идельчик В. И. Электрические системы и сети. М.: Энергоатомиздат, 1989. 592 с.
- Kundur P., Balu N. J., Lauby M. G. Power System Stability and Control. New York: McGraw-Hill Education, 1994. 1176 p.
- Sauer P., Pai A. Power System Dynamics and Stability. Prentice-Hall: Englewood Cliffs, 1998. 357 p.
- Anderson P. M., Fouad A. A. Power System Control and Stability. NJ: IEEE, Piscataway, 2003. 672 p.
- Horowitz S. H., Phadke A. G., Henville C. F. Power System Relaying. New York: John Wiley & Sons, 2008. 528 p.
- Machowski J., Bialek J., Bumby D. Power System Dynamics: Stability and Control. New York: John Wiley & Sons, 2008. 629 p.
- Grainger J. J., Stevenson W. D. Power System Analysis. New York: McGraw-Hill Education, 2016. 787 p.
- Park R. H. Two-reaction theory of synchronous machines: Generalized method of analysis // Transactions of the American Institute of Electrical Engineers. 1929. Vol. 48, no. 3. P. 716–730. doi: 10.1109/T-AIEE.1929.5055275.
- Горев А. А. Переходные процессы синхронной машины. М.: Госэнергоиздат, 1950. 553 с.
- Wiatros-Motyka M. et al. Global Electricity Review 2023. New York: Ember, 2023. 163 p.
- Dobson I., Carreras B. A., Lynch V. E., Newman D. E. Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization // Chaos. 2007. Vol. 17, no. 2. P. 026103. doi: 10.1063/1.2737822.
- Schafer B., Witthaut D., Timme M., Latora V. Dynamically induced cascading failures in power grids // Nat. Commun. 2018. Vol. 9, no. 1. P. 1975. doi: 10.1038/s41467-018-04287-5.
- Bialek J. W. Why has it happened again? Comparison between the UCTE blackout in 2006 and the blackouts of 2003 // IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007. P. 51–56. doi: 10.1109/PCT.2007.4538291.
- Li C., Sun Y., Chen X. Analysis of the blackout in Europe on November 4, 2006 // In 2007 International Power Engineering Conference (IPEC 2007), 2007. P. 939–944.
- Vleuten E., Lagendijk V. Interpreting transnational infrastructure vulnerability: European blackout and the historical dynamics of transnational electricity governance // Energy Policy. 2010. Vol. 38, no. 4. P. 2053–2062. doi: 10.1016/j.enpol.2009.11.030.
- Veloza O. P., Santamaria F. Analysis of major blackouts from 2003 to 2015: classification of incidents and review of main causes // Electr. J. 2016. Vol. 29, no. 7. P. 42–49. doi: 10.1016/j.tej.2016.08.006.
- Shao Y., Tang T., Yi J., Wang A. Analysis and lessons of blackout in Turkey power grid on March 31 // AEPS. 2016. Vol. 40, no. 23. P. 9–14. doi: 10.7500/AEPS20160412004.
- Gajduk A., Todorovski M., Kocarev L. Stability of power grids: An overview // The European Physical Journal Special Topics. 2014. Vol. 223, no. 12. P. 2387–2409. doi: 10.1140/epjst/e2014-02212-1.
- Filatrella G., Nielsen A. H., Pedersen N. F. Analysis of a power grid using a Kuramoto-like model // The European Physical Journal B. 2008. Vol. 61, no. 4. P. 485–491. doi: 10.18500/0869-6632-00312810.1140/epjb/e2008-00098-8.
- Nitzbon J., Schultz P., Heitzig J., Kurths J., Hellmann F. Deciphering the imprint of topology on nonlinear dynamical network stability // New J. Phys. 2017. Vol. 19, no. 3. P. 033029. doi: 10.1088/1367-2630/aa6321.
- Kim H., Lee S. H., Davidsen J., Son S. Multistability and variations in basin of attraction in powergrid systems // New J. Phys. 2018. Vol. 20, no. 11. P. 113006. doi: 10.1088/1367-2630/aae8eb.
- Hellmann F., Schultz P., Jaros P., Levchenko R., Kapitaniak T., Kurths J., Maistrenko Y. Networkinduced multistability through lossy coupling and exotic solitary states // Nat. Commun. 2020. Vol. 11, no. 1. doi: 10.1038/s41467-020-14417-7.
- Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. A new scenario for Braess’s paradox in power grids // Chaos. 2022. Vol. 32, no. 11. P 113116. doi: 10.1063/5.0093980.
- Gupta P. C., Singh P. P. Chaos, multistability and coexisting behaviours in small-scale grid: Impact of electromagnetic power, random wind energy, periodic load and additive white Gaussian noise // Pramana. 2023. Vol. 97, no. 3. doi: 10.1007/s12043-022-02478-w.
- Korsak A. J. On the Question of uniqueness of stable load-flow solutions // IEEE Transactions on Power Apparatus and Systems. 1972. Vol. 91, no. 3. P. 1093–1100. doi: 10.1109/TPAS.1972.293463.
- Casazza J. A. Blackouts: Is the risk increasing? // Electrical World. 1998. Vol. 212, no. 4. P. 62–64.
- Janssens N., Kamagate A. Loop flows in a ring AC power system // International Journal of Electrical Power & Energy Systems. 2003. Vol. 25, no. 8. P. 591–597. doi: 10.1016/S0142-0615(03)00017-6.
- Coletta T., Delabays R., Adagideli I., Jacquod P. Topologically protected loop flows in high voltage AC power grids // New Journal of Physics. 2016. Vol. 18, no. 10. P. 103042. doi: 10.1088/1367-2630/18/10/103042.
- Delabays R., Coletta T., Jacquod P. Multistability of phase-locking and topological winding numbers in locally coupled Kuramoto models on single-loop networks // Journal of Mathematical Physics. 2016. Vol. 57, no. 3. P. 032701. doi: 10.1063/1.4943296.
- Manik D., Timme M., Witthaut D. Cycle flows and multistability in oscillatory networks // Chaos. 2017. Vol. 27, no. 8. P. 083123. doi: 10.1063/1.4994177.
- Delabays R., Jafarpour S., Bullo F. Multistability and anomalies in oscillator models of lossy power grids // Nat. Commun. 2022. Vol. 13, no. 1. P. 5238. doi: 10.1038/s41467-022-32931-8.
- Venkatasubramanian V., Schattler H., Zaborszky J. Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load // IEEE Transactions on Automatic Control. 1992. Vol. 37, no. 11. P. 1717–1733.
- Nguyen H. D., Turitsyn K. Voltage multistability and pulse emergency control for distribution system with power flow reversal // IEEE Transactions on Smart Grid. 2014. Vol. 6, no. 6. P. 2985–2996.
- Balestra C., Kaiser F., Manik D., Witthaut D. Multistability in lossy power grids and oscillator networks // Chaos. 2019. Vol. 29, no. 12. P. 123119. doi: 10.1063/1.5122739.
- Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. Bistability of operating modes and their switching in a three-machine power grid // Chaos. 2023. Vol. 33, no. 10. P 103129. doi: 10.1063/5.0165779.
- Kwatny H., Pasrija A., Bahar L. Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse // IEEE Transactions on Circuits and Systems. 1986. Vol. 33, no. 10. P. 981–991. doi: 10.1109/TCS.1986.1085856.
- Ayasun S., Nwankpa C. O., Kwatny H. G. Computation of singular and singularity induced bifurcation points of differential-algebraic power system model // IEEE Transactions on Circuits and Systems I: Regular Papers. 2004. Vol. 51, no. 8. P. 1525–1538. doi: 10.1109/TCSI.2004.832741.
- Thumler M., Zhang X., Timme M. Absence of pure voltage instabilities in the third-order model of power grid dynamics // Chaos. 2022. Vol. 32, no. 4. P. 043105. doi: 10.1063/5.0080284.
- Калентионок Е. В. Устойчивость электроэнергетических систем. Минск: Техноперспектива, 2008. 375 с.
- Bergen A. R., Hill D. J. A structure preserving model for power system stability analysis // IEEE Transactions on Power Apparatus and Systems. 1981. Vol. PAS-100, no. 1. P. 25–35. doi: 10.1109/TPAS.1981.316883.
- Nishikawa T., Motter A. E. Comparative analysis of existing models for power grid synchronization // New J. Phys. 2015. Vol. 17, no. 1. P. 015012. doi: 10.1088/1367-2630/17/1/015012.
- Grzybowski J. M. V., Macau E. E. N., Yoneyama T. Power-grids as complex networks: Emerging investigations into robustness and stability // In: Edelman M., Macau E., Sanjuan M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Cham: Springer, 2019. P. 287-–315. doi: 10.1007/978-3-319-68109-2_14.
- Kogler R., Plietzsch A., Schultz P., Hellmann F. Normal form for grid-forming power grid actors // PRX Energy. 2022. Vol. 1, no. 1. P. 013008.
- Rohden M., Sorge A., Timme M., Witthaut D. Self-organized synchronization in decentralized power grids // Phys. Rev. Lett. 2012. Vol. 109, no. 6. P. 064101.
- Witthaut D., Timme M. Braess‘s paradox in oscillator networks, desynchronization and power outage // New J. Phys. 2012. Vol. 14, no. 8. P. 083036.
- Fortuna L., Frasca M., Sarra-Fiore A. A network of oscillators emulating the Italian high-voltage power grid // International Journal of Modern Physics B. 2012. Vol. 26, no. 25. P. 1246011. doi: 10.1142/S0217979212460113.
- Lozano S., Buzna L., Diaz-Guilera A. Role of network topology in the synchronization of power systems // The European Physical Journal B. 2012. Vol. 85, no. 7. P. 231. doi: 10.1140/epjb/e2012-30209-9.
- Motter A. E., Myers S. A., Anghel M., Nishikawa T. Spontaneous synchrony in power-grid networks // Nature Physics. 2013. Vol. 9. P. 191–197.
- Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. Dynamics and stability of two power grids with hub cluster topologies // Cybernetics and physics. 2019. Vol. 8, no. 1. P. 29–99. doi: 10.35470/2226-4116-2019-8-1-29-33.
- Halekotte L., Feudel U. Minimal fatal shocks in multistable complex networks // Scientific Reports. 2020. Vol. 10, no. 1. P. 11783.
- Аринушкин П. А., Анищенко В.С. Анализ синхронных режимов работы цепочки связанных осцилляторов энергосетей // Известия вузов. Прикладная нелинейная динамика. 2018. Т. 26, № 3. C. 62–77. doi: 10.18500/0869-6632-2018-26-3-62-77.
- Аринушкин П. А., Анищенко В.С. Влияние выходной мощности генераторов на частотные характеристики энергосети в кольцевой топологии // Известия вузов. Прикладная нелинейная динамика. 2019. Т. 27, № 6. C. 25–38. doi: 10.18500/0869-6632-2019-27-6-25-38.
- Храменков В. А., Дмитричев А. С., Некоркин В. И. Пороговая устойчивость синхронного режима энергосети с топологией хаб-кластера // Известия вузов. Прикладная нелинейная динамика. 2020. T. 28, № 2. C. 120–139. doi: 10.18500/08696632-2020-28-2-120-139.
- Arinushkin, P. A., Vadivasova T. E. Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia // Chaos Solitons and Fractals. 2021. Vol. 152, iss. 3. P. 111343. doi: 10.1016/j.chaos.2021.111343.
- Witthaut D., Timme M. Nonlocal failures in complex supply networks by single link additions // The European Physical Journal B. 2013. Vol. 86, no. 9. P. 377. doi: 10.1140/epjb/e2013-40469-4.
- Schafer B., Pesch T., Manik D., Gollenstede J., Lin G., Beck H.-P., Witthaut D., Timme M. Understanding Braess’ paradox in power grids // Nat. Commun. 2022. Vol. 13, no. 1. P. 5396. doi: 10.1038/s41467-022-32917-6.
- Witthaut D., Hellmann F., Kurths J., Kettemann S. Collective nonlinear dynamics and selforganization in decentralized power grids // Rev. Mod. Phys. 2022. Vol. 94, no. 1. P. 015005. doi: 10.1103/RevModPhys.94.015005.
- Dorfler F., Bullo F. On the critical coupling for Kuramoto oscillators // SIAM Journal on Applied Dynamical Systems. 2011. Vol. 10, no. 3. P. 1070–1099. doi: 10.1137/10081530X.
- Dorfler F., Bullo F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators // SIAM Journal on Control and Optimization. 2012. Vol. 50, no. 3. P. 1616–1642. doi: 10.1137/110851584.
- Dorfler F., Chertkov M., Bullo F. Synchronization in complex oscillator networks and smart grids // Proc. Natl. Acad. Sci. U.S.A. 2013. Vol. 110, no. 6. P 2005–2010. doi: 10.1073/pnas.1212134110.
- Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. Partial stability criterion for a heterogeneous power grid with hub structures // Chaos, Solitons and Fractals. 2021. Vol. 152, iss. 6. P. 111373. doi: 10.1016/j.chaos.2021.111373.
- Molnar F., Nishikawa T., Motter A. E. Asymmetry underlies stability in power grids // Nat. Commun. 2021. Vol. 12, no. 1. P. 1457. doi: 10.48550/arXiv.2103.10952.
- Menck P. J., Heitzig J., Marwan N., Kurths J. How basin stability complements the linear-stability paradigm // Nat. Phys. 2013. Vol. 9, no. 2. P 89–92. doi: 10.1038/nphys2516.
- Menck P. J., Heitzig J., Kurths J., Schellnhuber J. H. How dead ends undermine power grid stability // Nat. Commun. 2014. Vol. 5, no. 1. P. 3969.
- Hellmann F., Schultz P., Grabow C., Heitzig J. Survivability of deterministic dynamical systems // Sci. Rep. 2016. Vol. 6, no. 1. P. 29654. doi: 10.1038/srep29654.
- Klinshov V. V., Nekorkin V. I., Kurths J. Stability threshold approach for complex dynamical systems // New J. Phys. 2015. Vol. 18, no. 1. P. 013004. doi: 10.1088/1367-2630/18/1/013004.
- Mitra C., Kittel T., Choudhary A., Kurths J., Donner R. V. Recovery time after localized perturbations in complex dynamical networks // New J. Phys. 2017. Vol. 19, no. 10. P. 103004. doi: 10.1088/1367-2630/aa7fab.
- Kim H., Lee M. J., Lee S. H., Son S.-W. On structural and dynamical factors determining the integrated basin instability of power-grid nodes // Chaos. 2019. Vol. 29, no. 10. P. 103132. doi: 10.1063/1.5115532.
- Kim H. How modular structure determines operational resilience of power grids // New J. Phys. 2019. Vol. 23, no. 12. P. 129501. doi: 10.48550/arXiv.2104.09338.
- Klinshov V. V., Kirillov S. Yu., Kurths J., Nekorkin V. I. Interval stability for complex systems // New J. Phys. 2018. Vol. 20, no. 4. P. 043040. doi: 10.1088/1367-2630/aab5e6.
- Бессонов Л. А. Теоретические основы электротехники. М.: Высшая школа, 1996. 587 c.
- Zhang X., Rehtanz C., Pal B. C. Flexible AC transmission systems: modelling and control. Berlin, Heidelberg: Springer, 2012. 546 p.
- Гантмахер Ф. Р. Теория матриц. М. Наука, 1966. 576 с.
- Gray R. M. Toeplitz and circulant matrices: a review // Foundations and Trends in Communications and Information Theory. 2006. Vol. 2, no. 3. P 155–239. doi: 10.1561/0100000006.
- Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989. 655 с.
补充文件
