К 50-летию открытия закономерностей Фейгенбаума

Обложка

Цитировать

Полный текст

Аннотация

В 1975 году, экспериментируя с карманным программируемым калькулятором, американский физик Митчелл Фейгенбаум (Mitchell Feigenbaum) открыл универсальные закономерности перехода к хаосу через бифуркации удвоения периода, которые теперь носят его имя.  

Об авторах

Александр Петрович Кузнецов

Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)

ORCID iD: 0000-0001-5528-1979
SPIN-код: 8834-7169
Scopus Author ID: 56265919800
ResearcherId: ABT-4026-2022
410019 Саратов, ул. Зеленая, 38 Телефон: (8452) 24-58-23

Юлия Викторовна Седова

Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)

ORCID iD: 0000-0001-7843-646X
410019 Саратов, ул. Зеленая, 38 Телефон: (8452) 24-58-23

Список литературы

  1. Myrberg P. J. Iteration der reellen Polynome zweiten Grades III // Ann. Acad. Sci. Fenn. Ser. A. 1963, no. 336/3. P. 1–18. doi: 10.5186/aasfm.1964.336-03.
  2. Шарковский A. M. Сосуществование циклов непрерывного преобразования прямой в прямую // Укр. мат. журн. 1964. Т. 26, № 1. C. 61.
  3. Metropolis N., Stein Р. К., Stein M. L. Finite limit sets for transformations of the unit interval // J. Comb. Theory. 1973. Vol. 15, no. 1. P. 25–44. doi: 10.1016/0097-3165(73)90033-2.
  4. Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. 1978. Vol. 19, no. 1. P. 25–52. doi: 10.1007/BF01020332.
  5. Feigenbaum M. J. The universal metric properties of nonlinear transformations // J. Stat. Phys. 1979. Vol. с21, no. 6. P. 669–706. doi: 10.1201/9780203734636.
  6. Фейгенбаум М. Универсальность в поведении нелинейных систем // Успехи физических наук. 1983. Т. 141, № 10. С. 343–374. doi: 10.3367/UFNr.0141.198310e.0343.
  7. Кузнецов А. П., Кузнецов С. П. Критическая динамика одномерных отображений. Часть 1. Сценарий Фейгенбаума // Известия вузов. ПНД. 1993. Т. 1, № 1. С. 15–33.
  8. Кузнецов С. П. Динамический хаос: Учеб. пособие для вузов. 2-е изд. перераб. и доп. М.: Физматлит, 2006. 356 с.
  9. Chang S. J., Wortis M., Wright J. A. Iterative properties of a one-dimensional quartic map. Critical lines and tricritical behavior // Phys. Rev. A. 1981. Vol. 25, no. 5. P. 2669–2684. doi: 10.1103/PhysRevA.24.2669.
  10. Кузнецов А. П., Кузнецов С. П., Сатаев И. Р. Критическая динамика одномерных отображений. Часть II. Двухпараметрический переход к хаосу // Известия вузов. ПНД. 1993. Т. 1, № 3. С. 17–35.
  11. Hirsch J. E., Nauenberg M., Scalapino D. J. Intermittency in the presence of noise: A renormalization group formulation // Physics Letters A. 1982. Vol. 87, no. 8. P. 391–393. doi: 10.1016/0375-9601(82)90165-7.
  12. Hu B., Rudnick J. Exact solutions to the Feigenbaum renormalization-group equations for intermittency // Phys. Rev. Lett. 1982. Vol. 48, no. 24. P. 1645–1648. doi: 10.1103/PhysRevLett.48.1645.
  13. Feigenbaum M. J., Kadanoff L. P., Shenker S. J. Quasiperiodicity in dissipative systems: a renormalization group analysis // Physica D. 1982. Vol. 5, no. 2–3. P. 370–386. doi: 10.1016/0167-2789(82)90030-6.
  14. Ostlund S., Rand D., Sethna J., Siggia E. Universal properties of the transition from quasiperiodicity to chaos in dissipative systems // Physica D. 1983. Vol. 8, no. 3. P. 303–342. doi: 10.1016/0167-2789(83)90229-4.
  15. Кузнецов С. П. Универсальность и подобие в поведении связанных систем Фейгенбаума // Известия вузов. Радиофизика. 1985. Т. 28, № 8. С. 991–1007.
  16. Kook H., Ling F. H., Schmidt G. Universal behavior of coupled nonlinear systems // Phys. Rev. A. 1991. Vol. 43, no. 6. P. 2700. doi: 10.1103/PhysRevA.43.2700.
  17. Kim S. Y., Kook H. Critical behavior in coupled nonlinear systems // Phys. Rev. 1992. Vol. 46, no. 8. P. R4467-R4470. doi: 10.1103/PhysRevA.46.R4467.
  18. Kim S. Y., Kook H. Period doubling in coupled maps // Phys. Rev. E. 1993. Vol. 48, no. 2. P. 785. doi: 10.1103/PhysRevE.48.785.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).