A spiking binary neuron — detector of causal links

Cover Page

Cite item

Full Text

Abstract

Purpose. Causal relationship recognition is a fundamental operation in neural networks aimed at learning behavior, action planning, and inferring external world dynamics. This operation is particularly crucial for reinforcement learning (RL). In the context of spiking neural networks (SNNs), events are represented as spikes emitted by network neurons or input nodes. Detecting causal relationships within these events is essential for effective RL implementation. Methods. This research paper presents a novel approach to realize causal relationship recognition using a simple spiking binary neuron. The proposed method leverages specially designed synaptic plasticity rules, which are both straightforward and efficient. Notably, our approach accounts for the temporal aspects of detected causal links and accommodates the representation of spiking signals as single spikes or tight spike sequences (bursts), as observed in biological brains. Furthermore, this study places a strong emphasis on the hardware-friendliness of the proposed models, ensuring their efficient implementation on modern and future neuroprocessors. Results. Being compared with precise machine learning techniques, such as decision tree algorithms and convolutional neural networks, our neuron demonstrates satisfactory accuracy despite its simplicity. Conclusion. We introduce a multi-neuron structure capable of operating in more complex environments with enhanced accuracy, making it a promising candidate for the advancement of RL applications in SNNs.

About the authors

Mikhail V. Kiselev

Чувашский государственный университет

Московский проспект, 15

Denis Aleksandrovich Larionov

Чувашский государственный университет

ORCID iD: 0000-0002-7437-2646
SPIN-code: 5586-5500
ResearcherId: JDM-7863-2023
Московский проспект, 15

Urusov M. Andrey

Чувашский государственный университет

Московский проспект, 15

References

  1. Moreno-Bote R., Drugowitsch J. Causal Inference and Explaining Away in a Spiking Network // Scientific Reports. 2015. Vol. 5. P. 17531. doi: 10.1038/srep17531.
  2. Lansdell B. J., Kording K. P. Neural spiking for causal inference and learning // PLoS Computational Biology. 2023. Vol. 19, no. 4. P. e1011005. doi: 10.1371/journal.pcbi.1011005.
  3. Skatchkovsky N., Jang O., Simeone O. Bayesian continual learning via spiking neural networks // Frontiers in Computational Neuroscience. 2022. Vol. 16. P. 1037976. doi: 10.3389/fncom.2022. 1037976.
  4. Friston K. The history of the future of the bayesian brain // Neuroimage. 2012. Vol. 62, no. 2. P. 1230–1233. doi: 10.1016/j.neuroimage.2011.10.004.
  5. Kasabov N., Scott N. M., Tu E., Marks S., Sengupta N., Capecci E., Othman M., Doborjeh M. G., Murli N., Hartono R., Espinosa-Ramos J. I., Zhou L., Alvi F. B., Wang G., Taylor D., Feigin V., Gulyaev S., Mahmoud M., Hou Z.-G., Yang J. Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications // Neural Networks. 2016. Vol. 78. P. 1–14. doi: 10.1016/j.neunet.2015.09.011.
  6. Kasabov N. K. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data // Neural Networks. 2014. Vol. 52. P. 62–76. doi: 10.1016/j.neunet.2014.01.006.
  7. Schliebs S., Fiasche M., Kasabov N. Constructing Robust Liquid State Machines to Process Highly Variable Data Streams // International Conference on Artificial Neural Networks ICANN 2012: Artificial Neural Networks and Machine Learning – ICANN. 2012. P. 604–611. doi: 10.1007/978- 3-642-33269-2_76.
  8. Doborjeh M., Doborjeh Z., Merkin A., Krishnamurthi R., Enayatollahi R., Feigin V., Kasabov N. Personalized Spiking Neural Network Models of Clinical and Environmental Factors to Predict Stroke // Cognitive Computation. 2022. Vol. 14. P. 2187–2202. doi: 10.1007/s12559-021-09975-x.
  9. Fernando C. From blickets to synapses: Inferring temporal causal networks by observation // Cognitive Science. 2013. Vol. 37, no. 8. P. 1426–1470. doi: 10.1111/cogs.12073.
  10. Markram H., Gerstner W., Sjostrom P. J.A history of spike-timing-dependent plasticity // Frontiers in Synaptic Neuroscience. 2011. Vol. 3. P. 4. doi: 10.3389/fnsyn.2011.00004.
  11. Kerr R. R., Grayden D. B., Thomas D. A., Gilson M., Burkitt A. N. Coexistence of Reward and Unsupervised Learning During the Operant Conditioning of Neural Firing Rates // PLoS ONE. 2014. Vol. 9, no. 1. P. e87123. doi: 10.1371/journal.pone.0087123.
  12. Yuan M., Wu X., Yan R., Tang H. Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses // Neural Computation. 2019. Vol. 31, no. 12. P. 2368–2389. doi: 10.1162/neco_a_01238.
  13. Mozafari M., Ganjtabesh M., Nowzari-Dalini A., Thorpe S. J., Masquelier T. Bio-Inspired Digit Recognition Using Reward-Modulated Spike-Timing-Dependent Plasticity in Deep Convolutional Networks // Pattern Recognition. 2019. Vol. 94. P. 87–95. doi: 10.1016/j.patcog.2019.05.015.
  14. Fremaux N., Sprekeler H., Gerstner W. Functional Requirements for Reward-Modulated SpikeTiming-Dependent Plasticity // The Journal of Neuroscience. 2010. Vol. 30, no. 40. P. 13326–13337. doi: 10.1523/JNEUROSCI.6249-09.2010.
  15. Juarez-Lora A., Ponce-Ponce V. H., Sossa H., Rubio-Espino E. R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm // Frontiers in Neurorobotics. 2022. Vol. 16. P. 904017. doi: 10.3389/fnbot.2022.904017.
  16. Ivanov D., Chezhegov A., Kiselev M., Grunin A., Larionov D. Neuromorphic artificial intelligence systems // Frontiers in Neuroscience. 2022. Vol. 16. P. 959626. doi: 10.3389/fnins.2022.959626.
  17. Kiselev M., Ivanov A., Ivanov D. Approximating Conductance-Based Synapses by Current-Based Synapses // Advances in Neural Computation, Machine Learning, and Cognitive Research IV. Neuroinformatics 2020. Studies in Computational Intelligence. 2020. Vol. 925. P. 394–402. doi: 10.1007/978-3-030-60577-3_47.
  18. Kiselev M. V. A Synaptic Plasticity Rule Providing a Unified Approach to Supervised and Unsupervised Learning // Proceedings of International Joint Conference on Neural Networks. 2017. P. 3806–3813. doi: 10.1109/IJCNN.2017.7966336.
  19. Ho V. M., Lee J. A., Martin K. C. The cell biology of synaptic plasticity // Science. 2011. Vol. 334, no. 6056. P. 623–628. doi: 10.1126/science.1209236.
  20. Citri A., Malenka R. C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms // Neuropsychopharmacology Reviews. 2008. Vol. 33. P. 18–41. doi: 10.1038/sj.npp.1301559.
  21. Roberts P. D., Leen T. K. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing // Frontiers in Computational Neuroscience. 2010. Vol. 4. P. 156. doi: 10.3389/fncom. 2010.00156.
  22. Jiajun F. A Review for Deep Reinforcement Learning in Atari: Benchmarks, Challenges, and Solutions // ArXiv:abs/2112.04145. 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».