Detection of focused beams of surface magnetostatic waves in YIG / Pt structures

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to experimentally study, using the inverse spin Hall effect (ISHE), the detection of focused beams of magnetostatic surface waves (MSSW) in integrated YIG (3.9 µm) / Pt (4 nm) thin-film microstructures, where the focusing effect was ensured by the curvilinear shape of the exciting antenna. Make a comparison with the case of detecting MSSWs excited by a rectilinear antenna. Methods. Experiments were carried out using the delay line structures based on the YIG/Pt. The amplitude-frequency characteristics of the YIG/Pt structure and the frequency dependence of the EMF (V(f)) induced in platinum were studied. Results. It was shown that at frequencies f near the long-wavelength limit of the MSSW spectrum, the magnitude of the EMF V(f) generated by a focused MSSW can be several times higher than the values of V(f) in the case of MSSW excitation by a common (straight) antenna. In this case, in the short-wavelength part of the spectrum, on the contrary, the magnitude of the EMF generated by the focused MSSW beam turns out to be noticeably smaller. This behavior is associated with chromatic aberration of the focusing antenna for the MSSW, which manifests itself in the frequency dependence of the focal length of the antenna, which is confirmed by the results of micromagnetic modeling. It is shown that the drop in the EMF signal generated by a focused MSSW beam in the short-wavelength part of the spectrum is associated with the focus reaching the area of the YIG not covered with the Pt film. In this case, the increase in V(f) in the long-wavelength region of the MSSW spectrum is explained by an increase in the linear power density of the MSSW and the formation of caustics under the Pt film. Conclusion. Obtained results can be used for the development of highly sensitive spin wave detectors and the creation of spin logic devices.

About the authors

M. E. Seleznev

Saratov State University

ORCID iD: 0000-0002-7359-3201
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Galina Mihajlovna Dudko

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences; Research and Production Complex "Precision Equipment"

ORCID iD: 0000-0002-7083-4399
ul. Zelyonaya, 38, Saratov, 410019, Russia

Y. V. Nikulin

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-2957-5468
ul. Zelyonaya, 38, Saratov, 410019, Russia

Y. V. Khivintsev

Saratov State University; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Valentin Konstantinovich Sakharov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0001-7168-1198
Scopus Author ID: 7102083378
ResearcherId: ADD-5050-2019
ul. Zelyonaya, 38, Saratov, 410019, Russia

Aleksandr Vladimirovich Kozhevnikov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0002-8904-475X
ul. Zelyonaya, 38, Saratov, 410019, Russia

S. L. Vysotskii

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0003-3151-9297
ul. Zelyonaya, 38, Saratov, 410019, Russia

Y. A. Filimonov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0002-2645-6669
Scopus Author ID: 7006231446
ResearcherId: I-2057-2017
ul. Zelyonaya, 38, Saratov, 410019, Russia

References

  1. Никитов С. А., Калябин Д. В., Лисенков И. В., Славин А. Н., Барабаненков Ю. Н., Осокин С. А., Садовников А. В., Бегинин Е. Н., Морозова М. А., Шараевский Ю. П., Филимонов Ю. А., Хивинцев Ю. В., Высоцкий С. Л., Сахаров В. К., Павлов Е. С. Магноника — новое направление спинтроники и спин-волновой электроники. УФН. 2015. Т. 185, № 10. С. 1099–1128. doi: 10.3367/UFNr.0185. 201510m.1099.
  2. Никитов С. А., Сафин А. Р. Калябин Д. В., Садовников А. В., Бегинин Е. Н., Логунов М. В., Морозова М. А., Одинцов С. А., Осокин С. А., Шараевская А.Ю., Шараевский Ю. П., Кирилюк А. И. Диэлектрическая магноника — от гигагерцев к терагерцам. УФН. 2020. Т. 190, № 10. С. 1009–1040. doi: 10.3367/UFNe.2019.07.038609.
  3. Chumak A. A., Vasyuchka V. I., Serga A. A., Hillebrands B. Magnon spintronics. Nature Phys. 2015. Vol. 11. P. 453–461. DOI: doi: 10.1038/nphys3347.
  4. Demidov V. E., Urazhdin S., Loubens G., Klein O., Cros V., Anane A., Demokritov S. O. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 2017. Vol. 673. P. 1–31. doi: 10.1016/j.physrep.2017.01.001.
  5. Althammer M. Pure spin currents in magnetically ordered insulator/normal metal heterostructures // J. Phys. D: Appl. Phys. 2018. Vol. 51, no. 31. P. 313001. doi: 10.1088/1361-6463/aaca89.
  6. Demidov V. E., Urazhdin S., Anane A., Cros V., Demokritov S. O. Spin–orbit-torque magnonics. Journal of Applied Physics. 2020. V. 127, no. 17. P. 170901. doi: 10.1063/5.0007095.
  7. Brataas A., van Wees B., Klein O., de Loubens G., Viret M. Spin insulatronics // Physics Reports. 2020. Vol. 885. P. 1–27. doi: 10.1016/j.physrep.
  8. Mahmoud A., Ciubotaru F., Vanderveken F., Chumak A. V., Hamdioui S., Adelmann C., Cotofana S. Introduction to spin wave computing. J. Appl. Phys. 2020. Vol. 128, no. 16. 161101. DOI: 10.1063/ 5.0019328.
  9. Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Akerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Cotofana S., Csaba G., Dobrovolskiy O. V., Dubs C., Elyasi M., Fripp K. G., Fulara H., Golovchnsiy I. A., Gonzalez-Ballster C., Graczyk P., Grundler D., Gruszecki P., Gubbiotti G., Guslienko K., Haldar A., Hamdioui S., Hertel R., Hillebrands B., Hioki T., Houshang A., Hu C.- M., Huebl H., Huth M., Iacocca E., Jungfleisch M. B., Kakazei G. N., Khitun A., Khymyn R., Kikkawa T., Klaui M., Klein O., Klos J. W., Knauer S., Koraltan S., Kostylev M., Krawczyk M., Krivorotov I. N., Kruglyak V. V., Lachance-Quirion D., Ladak S., Lebrun R., Li Y., Linder M., Macedo R., Mayr S., Melkov G. A., Mieszczak S., Nakamura Y., Nembach H. T., Nikitin A. A., Nikitov S. A., Novosad V., Otalora J. A., Otani Y., Papp A., Pigeau B., Pirro P., Porod W., Porrati F., Qin H., Rana B., Reimann T., Reinte F., Romero-Isart O., Ross A., Sadovnikov A. V., Safin A. R., Saitoh E., Schmidt G., Schultheiss H., Schultheiss K., Serga A. A., Sharma S., Shaw J. M., Suess D., Surzhenko O., Szulc K., Taniguchi T., Urbanek M., Usami K., Ustinov A. B., van der Sar T., van Dijken S., Vasyuchka V. I., Verba R., Viola Kusminskiy S., Wang Q., Weides M., Weiler M., Wintz S., Wolski S. P., Zhang X. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics. 2022. Vol. 58, no. 6. P. 0800172. doi: 10.1109/TMAG.2022.3149664.
  10. Khitun A. Magnonic holographic devices for special type data processing. J. Appl. Phys. 2013. Vol. 113, no. 16. P. 164503. doi: 10.1063/1.4802656.
  11. Gertz F., Kozhevnikov A., Filimonov Y., Nikonov D. E., Khitun A. Magnonic holographic memory: From proposal to device. IEEE J.Explor. Solid-State Comput. Devices Circuits. 2015. Vol. 1, P. 67–75. doi: 10.1109/JXCDC.2015.2461618.
  12. Khivintsev Y., Ranjbar M., Gutierrez D., Chiang H., Kozhevnikov A., Filimonov Y., Khitun A. Prime factorization using magnonic holographic devices. J. Appl. Phys. 2016. Vol. 120, no. 12. P. 123901. doi: 10.1063/1.4962740.
  13. Gutierrez D., Chiang H., Bhowmick T., Volodchenkov A. D., Ranjbar M., Liu G., Jiang C., Warren C., Khivintsev Y., Filimonov Y. Garay J., Lake R., Balandin A. A., Khitun A. Magnonic holographic imaging of magnetic microstructures. JMMM. 2017. Vol. 428. P. 348–356. DOI: 10. 1016/j.jmmm.2016.12.022.
  14. Papp A., Porod W., Csurgay A. I., Csaba G. Nanoscale spectrum analyzer based on spin-wave interference. Sci. Rep. 2017. Vol. 7. P. 9245. doi: 10.1038/s41598-017-09485-7.
  15. Csaba G., Papp A., Porod W. Holographic Algorithms for On-Chip, Non-Boolean Computing // 17th International Workshop on Computational Electronics (IWCE 2014). Paris, France, 2014. P. 33–34. doi: 10.1109/IWCE.2014.6865814.
  16. Csaba G., Papp A., Porod W. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A. 2017. V. 381. P. 1471. doi: 10.1016/j.physleta.2017.02.042.
  17. Macia F., Kent A. D. Hoppensteadt F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology. 2011. Vol. 22. P. 095301. doi: 10.1088/0957-4484/22/9/095301.
  18. Csaba G., Papp A., Porod W. Spin-wave based realization of optical computing primitives. J. Appl.Phys. 2014. Vol. 115, no. 17. P. 17C741. doi: 10.1063/1.4868921.
  19. Vogel M., Hillebrands B., von Freymann G. Spin-Wave Optical Elements: Towards Spin-wave Fourier Optics. arXiv:1906.02301v1 [physics.app-ph]
  20. Papp A., Csaba G. Lens Design for Computing With Anisotropic Spin Waves. IEEE Magn. Lett. 2018. Vol. 9. P. 3706405. doi: 10.1109/LMAG.2018.2872127.
  21. Вашковский А. В., Стальмахов А. В., Шахназарян Д. Г. Формирование, отражение и преломление пучков магнитостатических волн. Известия вузов. Физика. 1988. № 11. С. 57–75. doi: 10.1007/BF00893543.
  22. Davies C. S., Kruglyak V. V. Graded-index magnonics. Low Temperature Physics. 2015. Vol. 41. P. 760–766. doi: 10.1063/1.4932349.
  23. Schneider T., Serga A. A., Chumak A. V., Sandweg C. W., Trudel S., Wolff S., Kostylev M. P., Tiberkevich V. S., Slavin A. N., Hillebrands B. Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys. Rev. Lett. 2010. Vol. 104. P. 197203. doi: 10.1103/PhysRevLett.104.197203.
  24. Ulrichs H., Demidov V. E., Demokritov S. O., Urazhdin S. Spin-torque nano-emitters for magnonic applications. Appl. Phys. Lett. 2012. Vol. 100. P. 162406. doi: 10.1063/1.4704563.
  25. Gieniusz R., Ulrichs H., Bessonov V. D., Guzowska U., Stognii A. I., Maziewski A. Single antidot as a passive way to create caustic spin-wave beams in yttrium iron garnet films. Appl. Phys. Lett. 2013. Vol. 102. P. 102409. doi: 10.1063/1.4795293
  26. Gieniusz R., Bessonov V. D., Guzowska U., Stognii A. I., Maziewski A. An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films. Appl. Phys. Lett. 2014. Vol. 104, no. 8. P. 082412. doi: 10.1063/1.4867026.
  27. Mansfeld S., Topp J., Martens K., Toedt J. N., Hansen W., Heitmann D., Mendach S. Spin Wave Diffraction and Perfect Imaging of a Grating. Phys. Rev. Lett. 2012. Vol. 108. P. 047204. doi: 10.1103/PhysRevLett.108.047204.
  28. Choi S., Lee K. -S., Kim S. -K. Spin-wave interference. Appl. Phys. Lett. 2006. Vol. 89, no. 6. P. 062501. doi: 10.1063/1.2259813.
  29. Gruszecki P., Kasprzak M., Serebryannikov A. E., Krawczyk M., Smigaj W. Microwave excitation of spin wave beams in thin ferromagnetic films. Sci. Rep. 2016. Vol. 6. P. 22367. DOI: 10.1038/ srep22367.
  30. Korner H. S., Stigloher J., Back C. H. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas. Phys. Rev. B. 2017. Vol. 96. P. 100401(R). doi: 10.1103/PhysRevB.96.100401.
  31. Loayza N., Jungfleisch M. B., Hoffmann A., Bailleul M., Vlaminck V. Fresnel diffraction of spin waves. Phys. Rev. B. 2018. Vol. 98. P. 144430. doi: 10.1103/PhysRevB.98.144430.
  32. Madami M., Khivintsev Y., Gubbiotti G., Dudko G., Kozhevnikov A., Sakharov V., Stal’makhov A., Khitun A., Filimonov Y. Nonreciprocity of backward volume spin wave beams excited by the curved focusing transducer. Appl. Phys. Lett. 2018. Vol. 113, no. 15. P. 152403. doi: 10.1063/1.5050347.
  33. Kajiwara Y., Harii K., Takahashi S., Ohe J., Uchida K., Mizuguchi M., Umezawa H., Kawai H., Ando K., Takanashi K., Maekawa S., Saitoh E. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature. 2010. Vol. 464. P. 262–266. DOI: 10.1038/ nature08876.
  34. Collet M., de Milly X., d’Allivy Kelly O., Naletov V. V., Bernard R., Bortolotti P., Ben Youssef J., Demidov V. E., Demokritov S. O., Prieto J. L., Munoz M., Cros V., Anane A., de Loubens G., Klein O. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat Commun. 2016. Vol. 7. P. 10377. doi: 10.1038/ncomms10377.
  35. Uchida K.-I., Adachi H., Ota T., Nakayama H., Maekawa S., Saitoh E. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 2010. Vol. 97, no. 17. P. 172505. doi: 10.1063/1.3507386.
  36. Chumak A. V., Serga A. A., Jungfleisch M. B., Neb R., Bozhko D. A., Tiberkevich V. S., Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 2012. Vol. 100, no. 8. P. 082405. doi: 10.1063/1.3689787.
  37. d’Allivy Kelly O., Anane A., Bernard R., Ben Youssef J., Hahn C., Molpeceres A. H., Carretero C., Jacquet E., Deranlot C., Bortolotti P., Lebourgeois R., Mage J.-C., de Loubens G., Klein O., Cros V., Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 2013. Vol. 103, no. 8. P. 082408. doi: 10.1063/1.4819157 .
  38. Balinsky M., Ranjbar M., Haidar M., Durrenfeld P., Dumas R. K., Khartsev S., Slavin A., Akerman J. Spin pumping and the inverse spin Hall effect via magnetostatic surface spin-wave modes in YIG/Pt bilayers. IEEE Magn. Lett. 2015. Vol. 6. P. 3000604. doi: 10.1109/LMAG.2015. 2471276.
  39. Balinsky M., Chiang H., Gutierrez D., Khitun A. Spin wave interference detection via inverse spin Hall effect. Appl. Phys. Lett. 2021. Vol. 118, no. 24. P. 242402. doi: 10.1063/5.0055402.
  40. Селезнёв М. Е., Никулин Ю. В., Хивинцев Ю. В., Высоцкий С. Л., Кожевников А. В., Сахаров В. К., Дудко Г. М., Павлов Е. С., Филимонов Ю. А. Влияние трехмагнонных распадов на генерацию ЭДС поверхностными магнитостатическими волнами в интегральных структурах ЖИГ– Pt. Известия вузов. ПНД. 2022. Т. 30, № 5. С. 617–643. doi: 10.18500/0869-6632- 003008.
  41. Селезнёв М. Е., Никулин Ю. В.,Сахаров В. К.,Хивинцев Ю. В., Кожевников А. В., Высоцкий С. Л., Филимонов Ю. А. Влияние резонансного взаимодействия поверхностных магнито-статических волн с обменными модами на генерацию ЭДC в структурах YIG/Pt. ЖТФ. 2021. Т. 91, № 10. P. 1504–1508. doi: 10.21883/JTF.2021.10.51363.136-21.
  42. Селезнёв М. Е., Никулин Ю. В., Хивинцев Ю. В., Высоцкий С. Л., Кожевников А. В., Сахаров В. К., Дудко Г. М., Филимонов Ю. А. Влияние параметрической неустойчивости на спиновую накачку дипольно-обменными поверхностными магнитостатическими волнами в структурах ЖИГ–Pt. Известия вузов. ПНД. 2023. Т. 31, № 2. С. 225–242. doi: 10.18500/0869- 6632-003032.
  43. Никулин Ю. В., Высоцкий C. Л., Селезнев М. Е., Кожевников А. В., Сахаров В. К., Дудко Г. М., Хивинцев Ю. В., Филимонов Ю. А. Частотная зависимость смешанной спиновой проводимости структур YIG/Pt при спиновой накачке ПМСВ. ФТТ. 2023. Т. 65, № 6. С. 967–972. doi: 10.21883/FTT.2023.06.55652.10H.
  44. Дудко Г. М., Кожевников А. В., Сахаров В. К., Стальмахов А. В., Филимонов Ю. А., Хивинцев Ю. В. Расчет фокусирующих преобразователей спиновых волн методом микромагнитного моделирования. Известия Саратовского университета. Новая серия. Серия: Физика. 2018. Т. 18, № 2. С. 92–102. doi: 10.18500/1817-3020-2018-18-2-92-102.
  45. Damon R., Eshbach J. Magnetostatic modes of a ferromagnetic slab. J. Phys.Chem. Sol. 1961. Vol. 19, no. 3–4. P. 308–320. doi: 10.1016/0022-3697(61)90041-5.
  46. Donahue M. J., Porter D. G. OOMMF user’s guide, version 1.0. Interagency Report NIST 6376. National Institute of Standards and Technology, Gaithersburg, MD, 1999. DOI: 10.6028/ NIST.IR.6376.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies