Development of an algorithm for detecting slow peak-wave activity in non-convulsive forms of epilepsy

Cover Page

Cite item

Full Text

Abstract

The purpose of this study is to develop a classifier capable of detecting typical absence seizures in real-time using electroencephalogram (EEG) data and a Support Vector Machine (SVM) model. Methods. Sections of the EEG, previously identified by a specialist as containing typical absences, were used to train the SVM model. Key features for classification include the number of zero crossings, cross-correlation between two consecutive windows, spectral power across various frequency bands, and the standard deviation of instantaneous signal power. Results. Training and testing datasets were established, consisting of EEG windows with various types of artifacts. The SVM model was successfully trained and tested, achieving high performance metrics. The developed algorithm can be integrated into a mobile application and used in conjunction with a wearable EEG device with dry electrodes for real-time detection of typical absences. Conclusion. The study results affirm the potential for using machine learning techniques for the automatic detection and logging of epileptic activity. However, additional testing on a larger dataset is needed for more conclusive results, including data acquired through a wireless EEG device using dry electrodes. Future work will involve selecting a suitable EEG device and developing a mobile application for real-time data collection and analysis.

About the authors

Anton Sergeevich Belokopytov

National Research University "Higher School of Economics";

ORCID iD: 0009-0003-8059-5701
SPIN-code: 6775-4812
ul. Myasnitskaya 20, Moscow, 101000, Russia

Milana Mikhaylovna Makarova

National Research University "Higher School of Economics"

ul. Myasnitskaya 20, Moscow, 101000, Russia

Mikhail Igorevich Salamatin

National Research University "Higher School of Economics"

ORCID iD: 0009-0004-1063-5509
ul. Myasnitskaya 20, Moscow, 101000, Russia

Olga Mikhailovna Redkozubova

Нейроботикс

124498, Москва, Зеленоград, проезд 4922, д.4, стр.2, офис 477

References

  1. Reichsoellner J., Larch J., Unterberger I., Dobesberger J., Kuchukhidze G., Luef G., Bauer G., Trinka E. Idiopathic generalised epilepsy of late onset: a separate nosological entity? // J. Neurol. Neurosurg. Psychiatry. 2010. Vol. 81, no. 11. P. 1218–1222. doi: 10.1136/jnnp.2009.176651.
  2. Эпилепсия и эпилептический статус у взрослых и детей. Клинические рекомендации. Министерство здравоохранения Российской Федерации, 2022. 291 с.
  3. Cortez M. A., Snead III O. C. Pharmacologic models of generalized absence seizures in rodents // In: Pitkanen A., Schwartzkroin P. A., Moshe S. L. (eds) Models of Seizures and Epilepsy. Burlington: Academic Press, 2006. P. 111–126. doi: 10.1016/B978-012088554-1/50012-8.
  4. Destexhe A. Network models of absence seizures // In: Faingold C. L., Blumenfeld H. (eds) Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics. San Diego: Academic Press, 2014. P. 11–35. doi: 10.1016/B978-0-12-415804-7.00002-2.
  5. Elger C. E., Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection // Lancet Neurology. 2018. Vol. 17, no. 3. P. 279–288. doi: 10.1016/S1474-4422 (18)30038-3.
  6. Bruno E., Viana P. F., Sperling M. R., Richardson M. P. Seizure detection at home: Do devices on the market match the needs of people living with epilepsy and their caregivers? // Epilepsia. 2020. Vol. 61, no. S1. P. S11–S24. doi: 10.1111/epi.16521.
  7. Elmali A. D., Begley K., Chester H., Cooper J., Moreira C., Sharma S., Whelan A., Leschziner G., Richardson M. P., Stern W., Koutroumanidis M. Evaluation of absences and myoclonic seizures in adults with genetic (idiopathic) generalized epilepsy: a comparison between self-evaluation and objective evaluation based on home video-EEG telemetry // Epileptic Disorders. 2021. Vol. 23, no. 5. P. 719–732. doi: 10.1684/epd.2021.1325.
  8. Tatum 4th W. O., Winters L., Gieron M., Passaro E. A., Benbadis S., Ferreira J., Liporace J. Outpatient seizure identification: results of 502 patients using computer-assisted ambulatory EEG // Journal of Clinical Neurophysiology. 2001. Vol. 18, no. 1. P. 14–19. doi: 10.1097/00004691- 200101000-00004.
  9. Beniczky S., Wiebe S., Jeppesen J., Tatum W. O., Brazdil M., Wang Y., Herman S. T., Ryvlin P. Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology // Clinical Neurophysiology. 2021. Vol. 132, no. 5. P. 1173–1184. doi: 10.1016/j.clinph.2020.12.009.
  10. Wirrell E. C., Camfield C. S., Camfield P. R., Dooley J. M., Gordon K. E., Smith B. Long-term psychosocial outcome in typical absence epilepsy. Sometimes a wolf in sheeps’ clothing // Arch. Pediatr. Adolesc. Med. 1997. Vol. 151, no. 2. P. 152–158. doi: 10.1001/archpedi.1997.021703 90042008.
  11. Wirrell E. C., Camfield P. R., Camfield C. S., Dooley J. M., Gordon K. E. Accidental injury is a serious risk in children with typical absence epilepsy // Arch. Neurol. 1996. Vol. 53, no. 9. P. 929–932. doi: 10.1001/archneur.1996.00550090141020.
  12. Vega C., Guo J., Killory B., Danielson N., Vestal M., Berman R., Martin L., Gonzalez J. L., Blumenfeld H., Spann M. N. Symptoms of anxiety and depression in childhood absence epilepsy // Epilepsia. 2011. Vol. 52, no. 8. P. e70–e74. doi: 10.1111/j.1528-1167.2011.03119.x.
  13. Killory B. D., Bai X., Negishi M., Vega C., Spann M. N., Vestal M., Guo J., Berman R., Danielson N., Trejo G., Shisler D., Novotny Jr. E. J., Constable R. T., Blumenfeld H. Impaired attention and network connectivity in childhood absence epilepsy // NeuroImage. 2011. Vol. 56, no. 4. P. 2209– 2217. doi: 10.1016/j.neuroimage.2011.03.036.
  14. Fiest K. M., Birbeck G. L., Jacoby A., Jette N. Stigma in epilepsy // Current Neurology and Neuroscience Reports. 2014. Vol. 14, no. 5. P. 444. doi: 10.1007/s11910-014-0444-x.
  15. Kjaer T. W., Sorensen H. B. D., Groenborg S., Pedersen C. R., Duun-Henriksen J. Detection of paroxysms in long-term, single-channel EEG-monitoring of patients with typical absence seizures // IEEE Journal of Translational Engineering in Health and Medicine. 2017. Vol. 5. P. 2000108. doi: 10.1109/JTEHM.2017.2649491.
  16. Tovar Quiroga D. F., Britton J. W., Wirrell E. C. Patient and caregiver view on seizure detection devices: A survey study // Seizure. 2016. Vol. 41. P. 179–181. doi: 10.1016/j.seizure.2016.08.004.
  17. Ovchinnikov A., Luttjohann A., Hramov A., van Luijtelaar G. An algorithm for real-time detection of spike-wave discharges in rodents // Journal of Neuroscience Methods. 2010. Vol. 194, no. 1. P. 172–178. doi: 10.1016/j.jneumeth.2010.09.017.
  18. Sitnikova E., Hramov A. E., Koronovsky A. A., van Luijtelaar G. Sleep spindles and spike–wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis // Journal of Neuroscience Methods. 2009. Vol. 180, no. 2. P. 304–316. doi: 10.1016/j.jneumeth.2009.04.006.
  19. Назимов А. И., Павлов А. Н., Храмов А. Е., Грубов В. В., Ситникова Е.Ю., Храмова М. В. Распознавание осцилляторных паттернов на электроэнцефалограмме на основе адаптивного вейвлет-анализа // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2013. Т. 18, № 4. С. 1431–1434.
  20. Грубов В. В., Короновский А. А., Ситникова Е.Ю., Храмов А. Е. Частотно-временной анализ характерных паттернов активности нейронных ансамблей головного мозга при помощи непрерывного вейвлетного преобразования // Известия Российской академии наук. Серия физическая. 2014. Т. 78, № 12. С. 1525–1529.
  21. Ситникова Е.Ю., Смирнова К. С., Грубов В. В., Храмов А. Е. Принципы диагностики незрелой эпилептической (проэпилептической) активности на ЭЭГ у крыс с генетической предрасположенностью к абсанс-эпилепсии // Информационно-управляющие системы. 2019. № 1. С. 89–97. doi: 10.31799/1684-8853-2019-1-89-97.
  22. van Luijtelaar G., Luttjohann A., Makarov V. V., Maksimenko V. A., Koronovskii A. A., Hramov A. E. Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models // Journal of Neuroscience Methods. 2016. Vol. 260. P. 144–158. doi: 10.1016/j.jneumeth.2015.07.010.
  23. Грубов В. В., Ситникова Е.Ю., Куровская М. К., Короновский А. А., Храмов А. Е. Перспективы использования метода эмпирических мод и вейвлетного анализа для выявления проэпилептической активности на сигналах электроэнцефалограмм // Ученые записки физического факультета Московского университета. 2016. № 5. С. 165404.
  24. Jando G., Siegel R. M., Horvath Z., Buzsaki G. Pattern recognition of the electroencephalogram by artificial neural networks // Electroencephalography and Clinical Neurophysiology. 1993. Vol. 86, no. 2. P. 100–109. doi: 10.1016/0013-4694(93)90082-7.
  25. Buteneers P., Schrauwen B., Verstraeten D., Stroobandt D. Real-time epileptic seizure detection on intra-cranial rat data using reservoir computing // In: Koppen M., Kasabov N., Coghill G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Vol. 5506 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009. P. 56–63. doi: 10.1007/978-3-642- 02490-0_7.
  26. Xanthopoulos P., Rebennack S., Liu C.-C., Zhang J., Holmes G. L., Uthman B. M., Pardalos P. M. A novel wavelet based algorithm for spike and wave detection in absence epilepsy // In: 2010 IEEE International Conference on BioInformatics and BioEngineering. 31 May 2010 - 3 June 2010, Philadelphia, PA, USA. New York: IEEE, 2010. P. 14–19. doi: 10.1109/BIBE.2010.12.
  27. Startceva S. A., Luettjohann A., Sysoev I. V., van Luijtelaar G. A new method for automatic marking epileptic spike-wave discharges in local field potential signals // In: Proc. SPIE. Vol. 9448. Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics. SPIE, 2015. P. 94481R. doi: 10.1117/12.2179017.
  28. Baser O., Yavuz M., Ugurlu K., Onat F., Demirel B. U. Automatic detection of the spike-and-wave discharges in absence epilepsy for humans and rats using deep learning // Biomedical Signal Processing and Control. 2022. Vol. 76. P. 103726. doi: 10.1016/j.bspc.2022.103726.
  29. Guo L., Rivero D., Dorado J., Rabunal J. R., Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks // Journal of Neuroscience Methods. 2010. Vol. 191, no. 1. P. 101–109. doi: 10.1016/j.jneumeth.2010.05.020.
  30. Dan J., Vandendriessche B., Van Paesschen W., Weckhuysen D., Bertrand A. Computationallyefficient algorithm for real-time absence seizure detection in wearable electroencephalography // International Journal of Neural Systems. 2020. Vol. 30, no. 11. P. 2050035. doi: 10.1142/S012 9065720500355.
  31. Глухова Л.Ю. Клиническое значение эпилептиформной активности на электроэнцефалограмме // Российский журнал детской неврологии. 2016. Т. 11, № 4. С. 8–19. doi: 10.17650/2073- 8803-2016-11-4-8-19.
  32. Вольнова А. Б., Ленков Д. Н. Абсансная эпилепсия: механизмы гиперсинхронизации нейронных ансамблей // Медицинский фкадемический журнал. 2012. Т. 12, № 1. С. 7–19.
  33. Карлов В. А. Абсанс // Журнал неврологии и психиатрии им. С. С. Корсакова. 2005. Т. 3. С. 55–60.
  34. Petersen E. B., Duun-Henriksen J., Mazzaretto A., Kjaer T. W., Thomsen C. E., Sorensen H. B. D. Generic single-channel detection of absence seizures // In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 30 August 2011 - 3 September 2011, Boston, MA, USA. New York: IEEE, 2011. P. 4820–4823. doi: 10.1109/IEMBS.2011.6091194.
  35. Chatzichristos C., Swinnen L., Macea J., Bhagubai M., Van Paesschen W., De Vos M. Multimodal detection of typical absence seizures in home environment with wearable electrodes // Frontiers in Signal Processing. 2022. Vol. 2. P. 1014700. doi: 10.3389/frsip.2022.1014700.
  36. Japaridze G., Loeckx D., Buckinx T., Larsen S. A., Proost R., Jansen K., MacMullin P., Paiva N., Kasradze S., Rotenberg A., Lagae L., Beniczky S. Automated detection of absence seizures using a wearable electroencephalographic device: a phase 3 validation study and feasibility of automated behavioral testing // Epilepsia. 2022. doi: 10.1111/epi.17200.
  37. Макаров В. В. Методы и алгоритмы автоматической классификации психофизиологических характеристик человека: дисс. ... канд. техн. наук: 05.13.17. М.: Федеральный исследовательский центр «Информатика и управление» Российской академии наук, 2022. 104 с.
  38. Ситникова Е.Ю., Короновский А. А., Храмов А. Е. Анализ электрической активности головного мозга при абсанс-эпилепсии: прикладные аспекты нелинейной динамики // Известия вузов. ПНД. 2011. Т. 19, № 6. С. 173–182. doi: 10.18500/0869-6632-2011-19-6-173-182.
  39. Beniczky S., Rubboli G., Covanis A., Sperling M. R. Absence-to-bilateral-tonic-clonic seizure // Neurology. 2020. Vol. 95, no. 14. P. e2009–e2015. doi: 10.1212/WNL.0000000000010470.
  40. Shoeb A. CHB-MIT Scalp EEG Database [Electronic resource]. PhysioNet, 2010. Available from: https://physionet.org/content/chbmit/1.0.0/.
  41. NeuroPlay - NeuroPlay-6С [Electronic resource]. Available from: https://neuroplay.ru/catalog/neuroplay-6c/.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies