Synchronization of excitation waves in a two-layer network of FitzHugh-Nagumo neurons with noise modulation of interlayer coupling parameters

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to study the possibility of synchronization of wave processes in distributed excitable systems by means of noise modulation of the coupling strength between them. Methods. A simple model of a neural network, which consists of two coupled layers of excitable FitzHugh–Nagumo oscillators with a ring topology, is studied by numerical simulation methods. The connection between the layers has a random component, which is set for each pair of coupled oscillators by independent sources of colored Gaussian noise. Results. The possibility to obtain a regime close to full (in-phase) synchronization of traveling waves in the case of identical interacting layers and a regime of synchronization of wave propagation velocities in the case of non-identical layers differing in the values of the coefficients of intra-layer coupling is shown for certain values of parameters of coupling noise (intensity and correlation time). Conclusion. It is shown that the effects of synchronization of phases and propagation velocities of excitation waves in ensembles of neurons can be controlled using random processes of interaction of excitable oscillators set by statistically independent noise sources. In this case, both the noise intensity and its correlation time can serve as control parameters. The results obtained on a simple model can be quite general.

About the authors

Ibadulla Ramzesovich Ramazanov

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Ivan Aleksandrovich Korneev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Andrej Vjacheslavovich Slepnev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Tatjana Evgenevna Vadivasova

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Horsthemke W., Lefever R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Berlin, Heidelberg: Springer, 1984. 322 p. doi: 10.1007/3-540-36852-3.
  2. Graham R. Macroscopic potentials, bifurcations and noise in dissipative systems // In: Garrido L. (eds) Fluctuations and Stochastic Phenomena in Condensed Matter. Lecture Notes in Physics, vol. 268. Berlin, Heidelberg: Springer, 1987. P. 1-34. doi: 10.1007/3-540-17206-8_1.
  3. Schimansky-Geier L., Herzel H. Positive Lyapunov exponents in the Kramers oscillator // Journal of Statistical Physics. 1993. Vol. 70, no. 1-2. P. 141-147. doi: 10.1007/BF01053959.
  4. Arnold L. Random dynamical systems // In: Johnson R. (eds) Dynamical Systems. Lecture Notes in Mathematics, vol. 1609. Berlin, Heidelberg: Springer, 1995. P. 1-43. doi: 10.1007/BFb0095238.
  5. Moss F. Stochastic resonance: From the ice ages to the monkey’s ear // In: Weiss G. H. (eds) Contemporary Problems in Statistical Physics. Philadelphia, Pennsylvania: SIAM, 1994. P. 205-253. doi: 10.1137/1.9781611971552.ch5.
  6. Kabashima S., Kawakubo T. Observation of a noise-induced phase transition in a parametric oscillator // Phys. Lett. A. 1979. Vol. 70, no. 5-6. P. 375-376. doi: 10.1016/0375-9601(79)90335-9.
  7. Pikovsky A. S., Kurths J. Coherence resonance in a noise-driven excitable system // Phys. Rev. Lett. 1997. Vol. 78, no. 5. P. 775-778. doi: 10.1103/PhysRevLett.78.775.
  8. Анищенко В. С., Нейман А. Б., Мосс Ф., Шиманский-Гайер Л. Стохастический резонанс как индуцированный шумом эффект увеличения степени порядка // УФН. 1999. Т. 169, № 1. С. 7-38. doi: 10.3367/UFNr.0169.199901c.0007.
  9. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances // Chaos, Solitons & Fractals. 2009. Vol. 39, no. 1. P. 72-82. doi: 10.1016/j.chaos.2007.01.128.
  10. Garc´ıa-Ojalvo J., Sancho J. M. Noise in Spatially Extended Systems. New York: Springer, 1999. 307 p. doi: 10.1007/978-1-4612-1536-3.
  11. Hou Z., Yang L., Xiaobin Z., Xin H. Noise induced pattern transition and spatiotemporal stochastic resonance // Phys. Rev. Lett. 1998. Vol. 81, no. 14. P. 2854-2857. doi: 10.1103/PhysRevLett. 81.2854.
  12. Zimmermann M. G., Toral R., Piro O., San Miguel M. Stochastic spatiotemporal intermittency and noise-induced transition to an absorbing phase // Phys. Rev. Lett. 2000. Vol. 85, no. 17. P. 3612-3615. doi: 10.1103/PhysRevLett.85.3612.
  13. Perc M. Noise-induced spatial periodicity in excitable chemical media // Chemical Physics Letters. 2005. Vol. 410, no. 1-3. P. 49-53. doi: 10.1016/j.cplett.2005.05.042.
  14. Cao F. J., Wood K., Lindenberg K. Noise-induced phase transitions in field-dependent relaxational dynamics: The Gaussian ansatz // Phys. Rev. E. 2007. Vol. 76, no. 5. P. 051111. DOI: 10.1103/ PhysRevE.76.051111.
  15. Слепнев А. В., Шепелев И. А., Вадивасова Т. Е. Эффекты шумового воздействия на активную среду с периодическими граничными условиями // Письма в ЖТФ. 2014. Т. 40, № 2. С. 30-36.
  16. Стратонович Р. Л. Избранные вопросы теории флюктуаций в радиотехнике. М.: Советское радио, 1961. 560 c.
  17. Neiman A. B., Russell D. F. Synchronization of noise-induced bursts in noncoupled sensory neurons // Phys. Rev. Lett. 2002. Vol. 88, no. 13. P. 138103. doi: 10.1103/PhysRevLett.88.138103.
  18. Ritt J. Evaluation of entrainment of a nonlinear neural oscillator to white noise // Phys. Rev. E. 2003. Vol. 68, no. 4. P. 041915. doi: 10.1103/PhysRevE.68.041915.
  19. Goldobin D. S., Pikovsky A. Synchronization and desynchronization of self-sustained oscillators by common noise // Phys. Rev. E. 2005. Vol. 71, no. 4. P. 045201. doi: 10.1103/PhysRevE.71.045201.
  20. Hramov A. E., Koronovskii A. A., Moskalenko O. I. Are generalized synchronization and noise induced synchronization identical types of synchronous behavior of chaotic oscillators? // Phys. Lett. A. 2006. Vol. 354, no. 5-6. P. 423-427. doi: 10.1016/j.physleta.2006.01.079.
  21. Nagai K. H., Kori H. Noise-induced synchronization of a large population of globally coupled nonidentical oscillators // Phys. Rev. E. 2010. Vol. 81, no. 6. P. 065202. doi: 10.1103/PhysRevE. 81.065202.
  22. Dolmatova A. V., Goldobin D. S., Pikovsky A. Synchronization of coupled active rotators by common noise // Phys. Rev. E. 2017. Vol. 96, no. 6. P. 062204. doi: 10.1103/PhysRevE.96.062204.
  23. Neiman A. Synchronizationlike phenomena in coupled stochastic bistable systems // Phys. Rev. E. 1994. Vol. 49, no. 4. P. 3484-3487. doi: 10.1103/PhysRevE.49.3484.
  24. Shulgin B., Neiman A., Anishchenko V. Mean switching frequency locking in stochastic bistable systems driven by a periodic force // Phys. Rev. Lett. 1995. Vol. 75, no. 23. P. 4157-4160. doi: 10.1103/PhysRevLett.75.4157.
  25. Lindner J. F., Meadows B. K., Ditto W. L., Inchiosa M. E., Bulsara A. R. Array enhanced stochastic resonance and spatiotemporal synchronization // Phys. Rev. Lett. 1995. Vol. 75, no. 1. P. 3-6. doi: 10.1103/PhysRevLett.75.3.
  26. Anishchenko V. S., Neiman A. B. Stochastic synchronization // In: Schimansky-Geier L., Poschel T. (eds) Stochastic Dynamics. Lecture Notes in Physics, vol. 484. Berlin, Heidelberg: Springer, 1997. P. 154-166. doi: 10.1007/BFb0105607.
  27. Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V. Interacting coherence resonance oscillators // Phys. Rev. Lett. 1999. Vol. 83, no. 9. P. 1771-1774. doi: 10.1103/PhysRevLett.83.1771.
  28. Neiman A., Schimansky-Geier L., Cornell-Bell A., Moss F. Noise-enhanced phase synchronization in excitable media // Phys. Rev. Lett. 1999. Vol. 83, no. 23. P. 4896-4899. DOI: 10.1103/ PhysRevLett.83.4896.
  29. Challenger J. D., McKane A. J. Synchronization of stochastic oscillators in biochemical systems // Phys. Rev. E. 2013. Vol. 88, no. 1. P. 012107. doi: 10.1103/PhysRevE.88.012107.
  30. Semenova N., Zakharova A., Anishchenko V., Scholl E. Coherence-resonance chimeras in a network of excitable elements // Phys. Rev. Lett. 2016. Vol. 117, no. 1. P. 014102. DOI: 10.1103/ PhysRevLett.117.014102.
  31. Vadivasova T. E., Slepnev A. V., Zakharova A. Control of inter-layer synchronization by multiplexing noise // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020. Vol. 30, no. 9. P. 091101. doi: 10.1063/5.0023071.
  32. Rybalova E. V., Vadivasova T. E., Strelkova G. I., Zakharova A. Multiplexing noise induces synchronization in multilayer networks // Chaos, Solitons & Fractals. 2022. Vol. 163. P. 112521. doi: 10.1016/j.chaos.2022.112521.
  33. Nikishina N. N., Rybalova E. V., Strelkova G. I., Vadivasova T. E. Destruction of cluster structures in an ensemble of chaotic maps with noise-modulated nonlocal coupling // Regular and Chaotic Dynamics. 2022. Vol. 27, no. 2. P. 242-251. doi: 10.1134/S1560354722020083.
  34. Doiron B., Rinzel J., Reyes A. Stochastic synchronization in finite size spiking networks // Phys. Rev. E. 2006. Vol. 74, no. 3. P. 030903. doi: 10.1103/PhysRevE.74.030903.
  35. Patel A., Kosko B. Stochastic resonance in continuous and spiking neuron models with levy noise // IEEE Transactions on Neural Networks. 2008. Vol. 19, no. 12. P. 1993-2008. doi: 10.1109/TNN. 2008.2005610.
  36. Ozer M., Perc M., Uzuntarla M. Stochastic resonance on Newman-Watts networks of Hodgkin- Huxley neurons with local periodic driving // Phys. Lett. A. 2009. Vol. 373, no. 10. P. 964-968. doi: 10.1016/j.physleta.2009.01.034.
  37. He Z.-Y., Zhou Y.-R. Vibrational and stochastic resonance in the FitzHugh-Nagumo neural model with multiplicative and additive noise // Chinese Physics Letters. 2011. Vol. 28, no. 11. P. 110505. doi: 10.1088/0256-307X/28/11/110505.
  38. Bressloff P. C., Lai Y. M. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise // The Journal of Mathematical Neuroscience. 2011. Vol. 1, no. 1. P. 2. doi: 10.1186/2190-8567-1-2.
  39. Kilpatrick Z. P. Stochastic synchronization of neural activity waves // Phys. Rev. E. 2015. Vol. 91, no. 4. P. 040701. doi: 10.1103/PhysRevE.91.040701.
  40. Sharma S. K., Malik M. Z., Brojen Singh R. K. Stochastic synchronization of neurons: the topologicalimpacts // Bioinformation. 2018. Vol. 14, no. 9. P. 504-510. doi: 10.6026/97320630014504.
  41. Yilmaz E., Ozer M., Baysal V., Perc M. Autapse-induced multiple coherence resonance in single neurons and neuronal networks // Scientific Reports. 2016. Vol. 6, no. 1. P. 30914. doi: 10.1038/srep30914.
  42. Yamakou M. E., Jost J. Control of coherence resonance by self-induced stochastic resonance in a multiplex neural network // Phys. Rev. E. 2019. Vol. 100, no. 2. P. 022313. doi: 10.1103/PhysRevE. 100.022313.
  43. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical Journal. 1961. Vol. 1, no. 6. P. 445-466. doi: 10.1016/S0006-3495(61)86902-6.
  44. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proceedings of the IRE. 1962. Vol. 50, no. 10. P. 2061-2070. doi: 10.1109/JRPROC.1962.288235.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies