Hybrid SIRS model of infection spread

Cover Page

Cite item

Full Text

Abstract

Purpose of this work is to build a model of the infection spread in the form of a system of differential equations that takes into account the inertial nature of the transfer of infection between individuals. Methods. The paper presents a theoretical and numerical study of the structure of the phase space of the system of ordinary differential equations of the mean field model. Results. A modified SIRS model of epidemic spread is constructed in the form of a system of ordinary differential equations of the third order. It differs from standard models by considering the inertial nature of the infection transmission process between individuals of the population, which is realized by introducing a «carrier agent» into the model. The model does not take into account the influence of the disease on the population size, while population density is regarded as a parameter influencing the course of the epidemic. The dynamics of the model shows a good qualitative correspondence with a variety of phenomena observed in the evolution of diseases. Discussion. The suggested complication of the standard SIRS model by adding to it an equation for the dynamics of the pathogen of infection presents prospects for its specification via more precise adjustment to specific diseases, as well as taking into account the heterogeneity in the distribution of individuals and the pathogen in space. Further modification of the model can go through complicating the function which defines the probability of infection, generation and inactivation of the pathogen, the influence of climatic factors, as well as by means of transition to spatially distributed systems, for example, networks of probabilistic cellular automata.

About the authors

Aleksej Vladimirovich Shabunin

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Бейли Н. Математика в биологии и медицине. М.: Мир, 1970. 326 с.
  2. Марчук Г. И. Математические модели в иммунологии. Вычислительные методы и эксперименты. М.: Наука, 1991. 304 c.
  3. Hethcote H. W. The mathematics of infectious diseases // SIAM Review. 2000. Vol. 42, no. 4. P. 599-653. doi: 10.1137/S0036144500371907.
  4. Андерсон Р., Мэй Р. Инфекционные болезни человека. Динамика и контроль. М.: Мир, 2004. 784 c.
  5. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. Москва - Ижевск: Институт компьютерных исследований, 2003. 368 c.
  6. Serfling R. E. Methods for current statistical analysis of excess pneumonia-influenza deaths // Public Health Reports. 1963. Vol. 78, no. 6. P. 494-506. doi: 10.2307/4591848.
  7. Burkom H. S., Murphy S. P., Shmueli G. Automated time series forecasting for biosurveillance // Statistics in Medicine. 2007. Vol. 26, no. 22. P. 4202-4218. doi: 10.1002/sim.2835.
  8. Pelat C., Boelle P.-Y., Cowling B. J., Carrat F., Flahault A., Ansart S., Valleron A.-J. Online detection and quantification of epidemics // BMC Medical Informatics and Decision Making. 2007. Vol. 7. P. 29. doi: 10.1186/1472-6947-7-29.
  9. Boccara N., Cheong K. Automata network SIR models for the spread of infectious diseases in populations of moving individuals // Journal of Physics A: Mathematical and General. 1992. Vol. 25, no. 9. P. 2447-2461. doi: 10.1088/0305-4470/25/9/018.
  10. Sirakoulis G. C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation // Ecological Modelling. 2000. Vol. 133, no. 3. P. 209-223. doi: 10.1016/S0304-3800(00)00294-5.
  11. Шабунин А. В. SIRS-модель распространения инфекций с динамическим регулированием численности популяции: Исследование методом вероятностных клеточных автоматов // Известия вузов. ПНД. 2019. T. 27, № 2. C. 5-20. doi: 10.18500/0869-6632-2019-27-2-5-20.
  12. Шабунин А. В. Синхронизация процессов распространения инфекций во взаимодействующих популяциях: Моделирование решетками клеточных автоматов // Известия вузов. ПНД. 2020. T. 28, № 4. С. 383-396. doi: 10.18500/0869-6632-2020-28-4-383-396.
  13. Фирсов О. В. Гибридное прогнозирование заболеваемости раком почки и смертности от него на основе нейросетевых и статистических технологий // Врач-аспирант. 2006. Т. 10, № 1. C. 15-32.
  14. Ефимова Н. В., Горнов А.Ю., Зароднюк Т. C. Опыт использования искусственных нейронных сетей при прогнозировании заболеваемости населения (на примере г. Братска) // Экология человека. 2010. № 3. C. 3-7.
  15. Белецкая C.Ю., Коровин В. Н., Родионов О. В. Разработка прогностических моделей развития заболеваемости детей в городском административном районе на основе нейросетевых технологий // Вестник Воронежского государственного технического университета. 2010. Т. 6, № 12. C. 201-205.
  16. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proc. R. Soc. Lond. A. 1927. Vol. 115, no. 772. P. 700-721. doi: 10.1098/rspa.1927.0118.
  17. Hamer W. H. The Milroy lectures on epidemic disease in England: The evidence of variability and persistence of type // The Lancet. 1906. Vol. 1. P. 733-739.
  18. Hutchinson G. E. Circular casual systems in ecology // Annals of the New York Academy of Sciences. 1948. Vol. 50, no. 4. P. 221-246. doi: 10.1111/j.1749-6632.1948.tb39854.x.
  19. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Netherlands: Springer, 1992. 502 p. doi: 10.1007/978-94-015-7920-9.
  20. Пеpеваpюxа А.Ю. Непрерывная модель трех сценариев инфекционного процесса при факторах запаздывания иммунного ответа // Биофизика. 2021. Т. 66, № 2. С. 384-407. doi: 10.31857/S0006302921020204.
  21. Anderson R. M., May R. M. Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes // Mathematical Medicine and Biology: A Journal of the IMA. 1984. Vol. 1, no. 3. P. 233-266. doi: 10.1093/imammb/1.3.233.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies