Dynamics of the Rabinovich-Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients

Cover Page

Cite item

Full Text

Abstract

Purpose of this work is a numerical study of the Rabinovich–Fabrikant system and its generalized model, which describe the occurrence of chaos during the parametric interaction of three modes in a nonequilibrium medium with cubic nonlinearity, in the case when the parameters that have the meaning of dissipation coefficients take negative values. These models demonstrate a rich dynamics that differs in many respects from what was observed for them, but in the case of positive values of the parameters. Methods. The study is based on the numerical solution of the differential equations, and their numerical bifurcation analysis using the MatCont program. Results. For investigated models we present a charts of dynamic regimes in the control parameters plane, Lyapunov exponents depending on the parameters, attractors and their basins. On the parameters plane, which have the meaning of dissipation coefficients, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. For both models we compared dynamics observed in the case when the parameters that have the meaning of dissipation coefficients take negative values, with the one observed in the case when these parameters take positive values. And it is shown that in the first case parameter space has a simpler structure. Conclusion. The Rabinovich– Fabrikant system and its generalized model were studied in detail in the case when the parameters which have the meaning of dissipation coefficients take negative values. It is shown that there are a number of differences in comparison with the case of positive values of these parameters. For example, a new type of chaotic attractor appears, multistability that is not related to the symmetry of the system disappears, etc. The obtained results are new, since the Rabinovich–Fabrikant system and its generalized model were studied in detail for the first time in the region of negative values of parameters which have the meaning of dissipation coefficients.

About the authors

Lyudmila Vladimirovna Turukina

Saratov State University; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Рабинович М. И., Фабрикант А. Л. Стохастическая автомодуляция волн в неравновесных средах // Журнал экспериментальной и теоретической физики. 1979. Т. 77, № 2. С. 617-629.
  2. Danca M.-F., Feckan M., Kuznetsov N., Chen G. Looking more closely to the Rabinovich-Fabrikant system // International Journal of Bifurcation and Chaos. 2016. Vol. 26, no. 2. P. 1650038. doi: 10.1142/S0218127416500383.
  3. Danca M.-F. Hidden transient chaotic attractors of Rabinovich-Fabrikant system // Nonlinear Dynamics. 2016. Vol. 86, no. 2. P. 1263-1270. doi: 10.1007/s11071-016-2962-3.
  4. Danca M.-F., Kuznetsov N., Chen G. Unusual dynamics and hidden attractors of the Rabinovich- Fabrikant system // Nonlinear Dynamics. 2017. Vol. 88, no. 1. P. 791-805. doi: 10.1007/s11071- 016-3276-1.
  5. Luo X., Small M., Danca M.-F., Chen G. On a dynamical system with multiple chaotic attractors // International Journal of Bifurcation and Chaos. 2007. Vol. 17, no. 9. P. 3235-3251. DOI: 10.1142/ S0218127407018993.
  6. Danca M.-F., Chen G. Bifurcation and chaos in a complex model of dissipative medium // International Journal of Bifurcation and Chaos. 2004. Vol. 14, no. 10. P. 3409-3447. DOI: 10.1142/ S0218127404011430.
  7. Srivastava M., Agrawal S. K., Vishal K., Das S. Chaos control of fractional order Rabinovich- Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich-Fabrikant system // Applied Mathematical Modelling. 2014. Vol. 38, no. 13. P. 3361- 3372. doi: 10.1016/j.apm.2013.11.054.
  8. Кузнецов А. П., Кузнецов С. П., Тюрюкина Л. В. Сложная динамика и хаос в модельной системе Рабиновича-Фабриканта // Известия Саратовского университета. Новая серия. Серия Физика. 2019. Т. 19, № 1. С. 4-18. doi: 10.18500/1817-3020-2019-19-1-4-18.
  9. Кузнецов С. П., Тюрюкина Л. В. Обобщенная система Рабиновича-Фабриканта: уравнения и динамика // Известия вузов. ПНД. 2022. Т. 30, № 1. С. 7-29. doi: 10.18500/0869-6632-2022- 30-1-7-29.
  10. Liu Y., Yang Q., Pang G. A hyperchaotic system from the Rabinovich system // Journal of Computational and Applied Mathematics. 2010. Vol. 234, no. 1. P. 101-113. doi: 10.1016/j.cam. 2009.12.008.
  11. Agrawal S. K., Srivastava M., Das S. Synchronization between fractional-order Ravinovich- Fabrikant and Lotka-Volterra systems // Nonlinear Dynamics. 2012. Vol. 69, no. 4. P. 2277-2288. doi: 10.1007/s11071-012-0426-y.
  12. Hocking L. M., Stewartson K. On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance // Proc. R. Soc. Lond. A. 1972. Vol. 326, no. 1566. P. 289-313. doi: 10.1098/rspa.1972.0010.
  13. Андронов А. А., Фабрикант А. Л. Затухание Ландау, ветровые волны и свисток // В кн.: Нелинейные волны / под. ред. Гапонова-Грехова А. В. М.: Наука, 1979. С. 68-104.
  14. Kuramoto Y., Yamada T. Turbulent state in chemical reactions // Progress of Theoretical Physics. 1976. Vol. 56, no. 2. P. 679-681. doi: 10.1143/PTP.56.679.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies