Multielectrode registration of episodic discharges generated by weakly electric fishes

Cover Page

Cite item

Full Text

Abstract

Purpose of this study introduces a multielectrode array (MEA) registration system in order to generate electric field images of the episodic discharges generated by weakly electric fish. A multielectrode registration system has several important features: the design of the multielectrode lattice, the amplifier circuit, the choice of reference points for differential measurements, the recovery of the absolute values of the electric field potentials, and the application of principal components analysis. Methods. There are several advantages of our MEA registration as compared with the traditional twoelectrode registration: (a) the signal-to-noise ratio is significantly increased, (b) it is possible to construct the spatial distribution of the electric field for a single electric discharge, (c) the signals’ sources can be easily separated and identified, and (d) quantitative data on the electrical potential distribution can be obtained throughout the entire experimental tank. Results. The results illustrate an example of applied MEA registration. Electric discharges were recorded from a weakly electric catfish, Clarias gariepinus, using an array of 8 x 8 electrodes at a sampling rate of 20 kHz. Data show oscillograms and two-dimensional plots of the spatial distribution of the electrical field.

About the authors

Vladimir Mendelevich Olshanskiy

A. N. Severtsov Institute of Ecology and Evolution of the RAS

Moscow, Leninsky prospect, 33

Dmitry Vladimirovich Zlenko

Lomonosov Moscow State University

GSP-1, Leninskie Gory, Moscow, Russian Federation

Andrey A. Orlov

A. N. Severtsov Institute of Ecology and Evolution of the RAS

Moscow, Leninsky prospect, 33

Alexander Ovanesovich Kasumyan

Lomonosov Moscow State University

GSP-1, Leninskie Gory, Moscow, Russian Federation

Peter Moller

Hunter College

695 Park Ave NY

Eoin MacMahon

Biosphere Environmental Ltd

3 John Street Killaloe, Co. Clare, Ireland

Wei Xue

Harbin Engineering University

145 Nantong St., b. 21A

References

  1. Finger S., Piccolino M. The Shocking History of Electric Fishes: From Ancient Epochs to the Birth of Modern Neurophysiology. Oxford: Oxford University Press, 2011. 470 p. doi: 10.1093/acprof:oso/9780195366723.001.0001.
  2. Cavendish H. An account of some attempts to imitate the effects of the torpedo by electricity // Phil. Trans. R. Soc. 1776. Vol. 66. P. 196-225. doi: 10.1098/rstl.1776.0013.
  3. Lissmann H. W. Continuous electrical signals from the tail of a fish, Gymnarchus niloticus Cuv. // Nature. 1951. Vol. 167, no. 4240. P. 201-202. doi: 10.1038/167201a0.
  4. Lissmann H. W. On the function and evolution of electric organs in fish // J. Exp. Biol. 1958. Vol. 35, no. 1. P. 156-191. doi: 10.1242/jeb.35.1.156.
  5. Bennett M. V. L. Electric organs // In: Hoar W. S., Randall D. J. (eds) Fish Physiology. Vol. 5. New York: Academic Press, 1971. P. 347-491.
  6. Bennett M. V. L. Electroreception // In: Hoar W. S., Randall D. J. (eds) Fish Physiology. Vol. 5. New York: Academic Press, 1971. P. 493-574.
  7. Henninger J., Krahe R., Sinz F., Benda J. Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging // J. Exp. Biol. 2020. Vol. 223, no. 3. P. jeb206342. doi: 10.1242/jeb.206342.
  8. Rasnow B. Measuring and visualizing EOD fields // In: Ladich F., Collin S. P., Moller P., Kapoor B. G. (eds) Communication in Fishes. Enfield, USA: Science Publishers Inc., 2006. P. 599-622.
  9. Rasnow B., Bower J. M. Imaging with electricity: How weakly electric fish might perceive objects // In: Bower J. M. (ed) Computational Neuroscience: Trends in Research. New York: Plenum, 1997. P. 795-800.
  10. Assad C., Rasnow B., Stoddard P. K. Electric organ discharges and electric images during electrolocation // J. Exp. Biol. 1999. Vol. 202, no. 10. P. 1185-1193.
  11. Hagedorn M., Womble M., Finger T. E. Synodontid catfish: A new group of weakly electric fish // Brain Behav. Evol. 1990. Vol. 35, no. 5. P. 268-277. doi: 10.1159/000115873.
  12. Baron V. D., Morshnev K. S., Olshansky V. M., Orlov A. A. Electric organ discharges of two species of African catfish (Synodontis) during social behavior // Animal Behaviour. 1994. Vol. 48, no. 6. P. 1472-1475. doi: 10.1006/anbe.1994.1387.
  13. Baron V. D., Orlov A. A., Golubtsov A. S. African Clarias catfish elicits long-lasting weak electric pulses // Experientia. 1994. Vol. 50, no. 7. P. 664-647. doi: 10.1007/BF01952864.
  14. Metting van Rijn A. C., Peper A., Grimbergen C. A. High-quality recording of bioelectric events. Part 2. Low-noise, low-power multichannel amplifier design // Med. Biol. Eng. Comput. 1991. Vol. 29, no. 4. P. 433-440. doi: 10.1007/BF02441666.
  15. Catania K. C. An optimized biological taser: Electric eels remotely induce or arrest movement in nearby prey // Brain Behav. Evol. 2015. Vol. 86, no. 1. P. 38-47. doi: 10.1159/000435945.
  16. Грищенко А. А., Сысоева М. В., Сысоев И. В. Определение основного временного масштаба эволюции информационных свойств сигнала локальных потенциалов мозга при абсансной эпилепсии // Известия вузов. ПНД. Т. 28, № 1. С. 98-110. doi: 10.18500/0869-6632-2020-28-1-98-110.
  17. Орлов А. А., Ольшанский В. М., Барон В. Д. Реконструкция паттернов электрических разрядов и механизмы электрогенерации у африканского клариевого сома Clarias gariepinus (Clariidae, Siluriformes) // Доклады Российской академии наук. Науки о жизни. 2021. Т. 500, № 1. С. 428-431. doi: 10.31857/S2686738921050243.
  18. Ольшанский В. М. Бионическое моделирование электросистем слабоэлектрических рыб. М.: Наука, 1990. 208 с.
  19. Makeig S., Onton J. ERP features and EEG dynamics: An ICA perspective // In: Luck S. J., Kappenman E. S. (eds) The Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press, 2011. P. 51-86. doi: 10.1093/oxfordhb/9780195374148.013.0035.
  20. Ольшанский В. М., Моршнев К. С., Насека А. М., Нгуен Тхи Нга. Электрические разряды клариевых сомов, культивируемых в Южном Вьетнаме // Вопросы ихтиологии. 2002. Т. 42, № 4. С. 549-557.
  21. Olshanskiy V. M., Kasumyan A. O., Moller P. On mating and function of associated electric pulses in Clarias macrocephalus (Gunther, 1864): Probing an old puzzle, first posed by Charles Darwin // Environmental Biology of Fishes. 2020. Vol. 103, no. 1. P. 99-114. doi: 10.1007/s10641-019-00936-w.
  22. Ольшанский В. М., Зленко Д. В. Формирование образов электрического поля и попытка преодолеть внутривидовой барьер // В сб.: Труды Седьмой Всероссийской конференции «Нелинейная динамика в когнитивных исследованиях». 20-24 сентября 2021 года, Нижний Новгород, Россия. Нижний Новгород: Институт прикладной физики РАН, 2021. С. 90-93.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies