Compartmental spiking neuron model CSNM

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to develop a compartment spiking neuron model as an element of growing neural networks. Methods. As part of the work, the CSNM is compared with the Leaky Integrate-and-Fire model by comparing the reactions of point models to a single spike. The influence of hyperparameters of the proposed model on neuron excitation is also investigated. All the described experiments were carried out in the Simulink environment using the tools of the proposed library. Results. It was concluded that the proposed model is able to qualitatively reproduce the reaction of the point classical model, and the tuning of hyperparameters allows reproducing the following patterns of signal propagation in a biological neuron: a decrease in the maximum potential and an increase in the delay between input and output spikes with an increase in the size of the neuron or the length of the dendrite, as well as an increase in the potential with an increase in the number of active synapses. Conclusion. The proposed compartment spiking neuron model allows to describe the behavior of biological neurons at the level of pulse signal conversion. The hyperparameters of the model allow tuning the neuron responses at fixed other neuron parameters. The model can be used as a part of spiking neural networks with details at the level of compartments of neurons dendritic trees.

About the authors

Aleksandr Valeryevich Bakhshiev

Peter the Great St. Petersburg Polytechnic University

ORCID iD: 0000-0002-1284-0088
Polytechnicheskaya, 29

Alexandra Andreevna Demcheva

Peter the Great St. Petersburg Polytechnic University

Polytechnicheskaya, 29

References

  1. Shrestha A., Mahmood A. Review of deep learning algorithms and architectures // IEEE Access. 2019. Vol. 7. P. 53040-53065. doi: 10.1109/ACCESS.2019.2912200.
  2. James C. D., Aimone J. B., Miner N. E., Vineyard C. M., Rothganger F. H., Carlson K. D., Mulder S. A., Draelos T. J., Faust A., Marinella M. J., Naegle J. H., Plimpton S. J. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications // Biologically Inspired Cognitive Architectures. 2017. Vol. 19. P. 49-64. doi: 10.1016/j.bica.2016.11.002.
  3. Tavanaei A., Ghodrati M., Kheradpisheh S. R., Masquelier T., Maida A. Deep learning in spiking neural networks // Neural Networks. 2019. Vol. 111. P. 47-63. doi: 10.1016/j.neunet.2018.12.002.
  4. Marcus G. Deep Learning: A Critical Appraisal [Electronic resource] // arXiv:1801.00631. arXiv Preprint, 2018. 27 p. Available from: https://arxiv.org/abs/1801.00631.
  5. Gerstner W. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking // Neural Computation. 2000. Vol. 12, no. 1. P. 43-89. doi: 10.1162/089976600300015899.
  6. Gerstner W., Kistler W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press, 2002. 480 p. doi: 10.1017/CBO9780511815706.
  7. Izhikevich E. M. Simple model of spiking neurons // IEEE Transactions on Neural Networks. 2003. Vol. 14, no. 6. P. 1569-1572. doi: 10.1109/TNN.2003.820440.
  8. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve // Bulletin of Mathematical Biology. 1990. Vol. 52, no. 1-2. P. 25-71. doi: 10.1007/BF02459568.
  9. Bell J. Cable theory // In: Binder M. D., Hirokawa N., Windhorst U. (eds) Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer, 2009. doi: 10.1007/978-3-540-29678-2_775.
  10. Lindsay A. E., Lindsay K. A., Rosenberg J. R. Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization // Journal of Computational Neuroscience. 2005. Vol. 19, no. 1. P. 21-38. doi: 10.1007/s10827-005-0192-7.
  11. Бахшиев А. В., Романов С. П. Воспроизведение реакций естественных нейронов как результат моделирования структурно-функциональных свойств мембраны и организации синаптического аппарата // Нейрокомпьютеры: разработка, применение. 2012. № 7. С. 25-35.
  12. Bakhshiev A., Gundelakh F. Mathematical model of the impulses transformation processes in natural neurons for biologically inspired control systems development // In: Supplementary Proceedings of the 4th International Conference on Analysis of Images, Social Networks and Texts (AIST-SUP 2015). Vol. 1452. Yekaterinburg, Russia, April 9-11, 2015. Aachen, Germany: CEUR-WS, 2015. P. 1-12.
  13. Бахшиев А. В. Перспективы применения моделей биологических нейронных структур в системах управления движением // Информационно-измерительные и управляющие системы. 2011. № 9. С. 85-90.
  14. Экклс Дж. Физиология синапсов. М.: Мир, 1966. 396 с.
  15. Neuro Matlab: модели спайковых нейронов в Matlab Simulink [Электронный ресурс]. Режим доступа: https://github.com/aicommunity/NeuroMatlab.
  16. Бахшиев А. В., Корсаков А. М., Астапова Л. А., Станкевич Л. А. Структурная адаптация сегментной спайковой модели нейрона // Труды VII Всероссийской конференции «Нелинейная динамика в когнитивных исследованиях - 2021». Нижний Новгород, 20-24 сентября 2021. Нижний Новгород: Институт прикладной физики РАН, 2021. С. 30-33.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies