Generalized Rabinovich-Fabrikant system: equations and its dynamics

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity

About the authors

Sergey Petrovich Kuznetsov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

L. V. Turukina

Saratov State University; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Кузнецов С. П. Динамический хаос. М.: Физматлит, 2006. 356 с.
  2. Ott E. Chaos in Dynamical Systems. Cambridge: Cambridge University Press, 1993. 385 p.
  3. Гукенхеймер Дж., Холмс П. Нелинейные колебания, динамические системы и бифуркации векторных полей. М.-Ижевск: Институт компьютерных исследований, 2002. 561 с.
  4. Анищенко В. С., Вадивасова Т. Е., Астахов В. В. Нелинейная динамика хаотических и стохастических систем. Саратов: Изд-во Сарат. ун-та, 1999. 367 с.
  5. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 240 с.
  6. Кузнецов С. П. Динамический хаос и гиперболические аттракторы: от математики к физике. М.-Ижевск: Институт компьютерных исследований, 2013. 488 с.
  7. Неймарк Ю. И., Ланда П. С. Стохастические и хаотические колебания. М.: Наука, 1987. 424 с.
  8. Lorenz E. N. The Essence of Chaos. Seattle, WA, USA: University of Washington Press, 1995. 240 p.
  9. Alligood K. T., Sauer T., Yorke J. Chaos: An Introduction to Dynamical Systems. New York: Springer-Verlag, 1996. 603 p. doi: 10.1007/b97589.
  10. Hilborn R. C. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford: Oxford University Press, 2001. 672 p.
  11. Рабинович М. И., Фабрикант А. Л. Стохастическая автомодуляция волн в неравновесных средах // Журнал экспериментальной и теоретической физики. 1979. Т. 77, № 2. С. 617-629.
  12. Danca M.-F., Feckan M., Kuznetsov N., Chen G. Looking more closely to the Rabinovich- Fabrikant system // International Journal of Bifurcation and Chaos. 2016. Vol. 26, no. 2. P. 1650038. doi: 10.1142/S0218127416500383.
  13. Liu Y., Yang Q., Pang G. A hyperchaotic system from the Rabinovich system // Journal of Computational and Applied Mathematics. 2010. Vol. 234, no. 1. P. 101-113. doi: 10.1016/j.cam.2009.12.008.
  14. Agrawal S. K., Srivastava M., Das S. Synchronization between fractional-order Rabinovich- Fabrikant and Lotka-Volterra systems // Nonlinear Dynamics. 2012. Vol. 69, no. 4. P. 2277-2288. doi: 10.1007/s11071-012-0426-y.
  15. Srivastava M., Agrawal S. K., Vishal K., Das S. Chaos control of fractional order Rabinovich- Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich-Fabrikant system // Applied Mathematical Modelling. 2014. Vol. 38, no. 13. P. 3361-3372. doi: 10.1016/j.apm.2013.11.054.
  16. Danca M.-F. Hidden transient chaotic attractors of Rabinovich-Fabrikant system // Nonlinear Dynamics. 2016. Vol. 86, no. 2. P. 1263-1270. doi: 10.1007/s11071-016-2962-3.
  17. Danca M.-F., Kuznetsov N., Chen G. Unusual dynamics and hidden attractors of the Rabinovich- Fabrikant system // Nonlinear Dynamics. 2017. Vol. 88, no. 1. P. 791-805. doi: 10.1007/s11071-016-3276-1.
  18. Danca M.-F., Chen G. Bifurcation and chaos in a complex model of dissipative medium // International Journal of Bifurcation and Chaos. 2004. Vol. 14, no. 10. P. 3409-3447. doi: 10.1142/S0218127404011430.
  19. Luo X., Small M., Danca M.-F., Chen G. On a dynamical system with multiple chaotic attractors // International Journal of Bifurcation and Chaos. 2007. Vol. 17, no. 9. P. 3235-3251. doi: 10.1142/S0218127407018993.
  20. Кузнецов А. П., Кузнецов С. П., Тюрюкина Л. В. Сложная динамика и хаос в модельной системе Рабиновича-Фабриканта // Известия Саратовского университета. Новая серия. Серия Физика. 2019. Т. 19, № 1. С. 4-18. doi: 10.18500/1817-3020-2019-19-1-4-18.
  21. Hocking L. M., Stewartson K. On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance // Proc. R. Soc. Lond. A. 1972. Vol. 326, no. 1566. P. 289-313. doi: 10.1098/rspa.1972.0010.
  22. Андронов А. А., Фабрикант А. Л. Затухание Ландау, ветровые волны и свисток // Нелинейные волны. М.: Наука, 1979. С. 68-104.
  23. Kuramoto Y., Yamada T. Turbulent state in chemical reactions // Progress of Theoretical Physics. 1976. Vol. 56, no. 2. P. 679-681. doi: 10.1143/PTP.56.679.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».