Mathematical model for epileptic seizures detection on an EEG recording

Cover Page

Cite item

Full Text

Abstract

Purpose of this study — analysis of the possibility of using convolutional neural networks as a model for detecting epileptic seizures on real EEG data. Methods. In this paper, wavelet analysis is used for time-frequency analysis. To localize epileptic discharges, the task of detecting them was reduced to the classification task and the ResNet18 architecture of neural network was used. Techniques were used to augment and balance the biomedical data dataset under consideration. Wavelet analysis is used for time-frequency analysis. To localize epileptic discharges, the problem of their detection was reduced to the classification task, and the ResNet18 neural network architecture was used. Techniques were used to augment and balance the considered biomedical dataset. Results. Convolutional neural network can be successfully used to detect epileptic seizures, a method of postprocessing the results of primary detection is proposed to improve the quality of the model. It is shown that the developed model demonstrates high accuracy in comparison with other methods based on classical machine learning algorithms. The value of the F1-score metric reaches 0.44, which is a high value for classification of the real biological data. Conclusion. The presented model based on a convolutional neural network for detecting epileptic seizures on an EEG recording can become the main one in medical decision support systems for epileptologist.

About the authors

Sergei Igorevich Nazarikov

Immanuel Kant Baltic Federal University

ORCID iD: 0000-0002-7056-3373
SPIN-code: 2843-9247
14 A. Nevskogo ul., Kaliningrad, 236041

References

  1. Megiddo I., Colson A., Chisholm D., Dua T., Nandi A., Laxminarayan R. Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model // Epilepsia. 2016. Vol. 57, no. 3. P. 464–474. doi: 10.1111/epi.13294.
  2. Sander J. W. The use of antiepileptic drugs–principles and practice // Epilepsia. 2004. Vol. 45, no. s6. P. 28–34. doi: 10.1111/j.0013-9580.2004.455005.x.
  3. Ghosh S., Sinha J. K., Khan T., Devaraju K. S., Singh P., Vaibhav K., Gaur P. Pharmacological and therapeutic approaches in the treatment of epilepsy // Biomedicines. 2021. Vol. 9, no. 5. P. 470. doi: 10.3390/biomedicines9050470.
  4. Tatum W. O., Mani J., Jin K., Halford J. J., Gloss D., Fahoum F., Maillard L., Mothersill I., Beniczky S. Minimum standards for inpatient long-term video-EEG monitoring: A clinical practice guideline of the international league against epilepsy and international federation of clinical neurophysiology // Clinical Neurophysiology. 2022. Vol. 134. P. 111–128. DOI: 10.1016/ j.clinph.2021.07.016.
  5. Карпов О. Э., Храмов А. Е. Информационные технологии, вычислительные системы и искусственный интеллект в медицине. М.: ДПК Пресс, 2022. 480 с.
  6. Sutton R. T., Pincock D., Baumgart D. C., Sadowski D. C., Fedorak R. N., Kroeker K. I. An overview of clinical decision support systems: benefits, risks, and strategies for success // npj Digital Medicine. 2020. Vol. 3. P. 17. doi: 10.1038/s41746-020-0221-y.
  7. Roy Y., Banville H., Albuquerque I., Gramfort A., Falk T. H., Faubert J. Deep learning-based electroencephalography analysis: a systematic review // Journal of Neural Engineering. 2019. Vol. 16, no. 5. P. 051001. doi: 10.1088/1741-2552/ab260c.
  8. Chen Z., Lu G., Xie Z., Shang W. A unified framework and method for EEG-based early epileptic seizure detection and epilepsy diagnosis // IEEE Access. 2020. Vol. 8. P. 20080–20092. doi: 10.1109/ACCESS.2020.2969055.
  9. Mousavi S. R., Niknazar M., Vahdat B. V. Epileptic seizure detection using AR model on EEG signals // In: 2008 Cairo International Biomedical Engineering Conference. 18-20 December 2008, Cairo, Egypt. New York: IEEE, 2009. P. 1–4. doi: 10.1109/CIBEC.2008.4786067.
  10. Wang D., Miao D., Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection // Expert Systems with Applications. 2011. Vol. 38, no. 11. P. 14314–14320. doi: 10.1016/j.eswa.2011.05.096.
  11. Vanabelle P., Handschutter P. D., Tahry R. E., Benjelloun M., Boukhebouze M. Epileptic seizure detection using EEG signals and extreme gradient boosting // The Journal of Biomedical Research. 2020. Vol. 34, no. 3. P. 228–239. doi: 10.7555/JBR.33.20190016.
  12. Karpov O. E., Khoymov M. S., Maksimenko V. A., Grubov V. V., Utyashev N., Andrikov D. A., Kurkin S. A., Hramov A. E. Evaluation of unsupervised anomaly detection techniques in labelling epileptic seizures on human EEG // Applied Sciences. 2023. Vol. 13, no. 9. P. 5655. DOI: 10.3390/ app13095655.
  13. Zhao W., Zhao W., Wang W., Jiang X., Zhang X., Peng Y., Zhang B., Zhang G. A novel deep neural network for robust detection of seizures using EEG signals // Computational and Mathematical Methods in Medicine. 2020. Vol. 2020. P. 9689821. doi: 10.1155/2020/9689821.
  14. Asif U., Roy S., Tang J., Harrer S. SeizureNet: Multi-spectral deep feature learning for seizure type classification // In: Kia S. M., Mohy-ud-Din H., Abdulkadir A., Bass C., Habes M., Rondina J. M., Tax C., Wang H., Wolfers T., Rathore S., Ingalhalikar M. (eds) Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Vol. 12449 of Lecture Notes in Computer Science. Cham: Springer, 2020. P. 77–87. doi: 10.1007/978-3-030- 66843-3_8.
  15. Andrzejak R. G., Schindler K., Rummel C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients // Phys. Rev. E. 2012. Vol. 86, no. 4. P. 046206. doi: 10.1103/PhysRevE.86.046206.
  16. Shoeb A. H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis. Massachusetts: Massachusetts Institute of Technology, 2009. 162 p.
  17. Hwang S., Park S., Kim D., Lee J., Byun H. Mitigating inter-subject brain signal variability FOR EEG-based driver fatigue state classification // In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 06-11 June 2021, Toronto, ON, Canada. New York: IEEE, 2021. P. 990–994. doi: 10.1109/ICASSP39728.2021.9414613.
  18. Homan R. W. The 10-20 electrode system and cerebral location // American Journal of EEG Technology. 1988. Vol. 28, no. 4. 1988. P. 269–279. doi: 10.1080/00029238.1988.11080272.
  19. Hramov A. E., Koronovskii A. A., Makarov V. A., Maximenko V. A., Pavlov A. N., Sitnikova E. Wavelets in Neuroscience. Cham: Springer, 2021. 384 p. doi: 10.1007/978-3-030-75992-6.
  20. Krizhevsky A., Sutskever I., Hinton G. E. ImageNet classification with deep convolutional neural networks // In: Pereira F., Burges C. J., Bottou L., Weinberger K. Q. (eds) Advances in Neural Information Processing Systems 25. NIPS, 2012. P. 1097–1105.
  21. Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L. ImageNet: A large-scale hierarchical image database // In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 20-25 June 2009, Miami, FL, USA. New York: IEEE, 2009. P. 248–255. doi: 10.1109/CVPR.2009.5206848.
  22. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 27-30 June 2016, Las Vegas, NV, USA. New York: IEEE, 2016. P. 770–778. doi: 10.1109/CVPR.2016.90.
  23. Hendrycks D., Lee K., Mazeika M. Using pre-training can improve model robustness and uncertainty // In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Long Beach, California. PMLR, 2019. P. 2712–2721.
  24. Zhang H., Cisse M., Dauphin Y. N., Lopez-Paz D. mixup: Beyond empirical risk minimization // In: 6th International Conference on Learning Representations. 30 Apr-3 May 2018, Vancouver, BC, Canada. ICLR (Poster), 2018. P. 1–13.
  25. Park D. S., Chan W., Zhang Y., Chiu C.-C., Zoph B., Cubuk E. D., Le Q. V. SpecAugment: A simple data augmentation method for automatic speech recognition // In: Proc. Interspeech 2019. 15–19 September 2019, Graz, Austria. Interspeech, 2019. P. 2613–2617. doi: 10.21437/Interspeech. 2019-2680.
  26. Karpov O. E., Afinogenov S., Grubov V. V., Maksimenko V., Korchagin S., Utyashev N., Hramov A. E. Detecting epileptic seizures using machine learning and interpretable features of human EEG // The European Physical Journal Special Topics. 2023. Vol. 232, no. 5. P. 673–682. doi: 10.1140/epjs/ s11734-022-00714-3.
  27. Karpov O. E., Grubov V. V., Maksimenko V. A., Kurkin S. A., Smirnov N. M., Utyashev N. P., Andrikov D. A., Shusharina N. N., Hramov A. E. Extreme value theory inspires explainable machine learning approach for seizure detection // Scientific Reports. 2022. Vol. 12, no. 1. P. 11474. doi: 10.1038/s41598-022-15675-9.
  28. Cortes C., Vapnik V. Support-vector networks // Machine Learning. 1995. Vol. 20, no. 3. P. 273–297. doi: 10.1007/BF00994018.
  29. Hramov A. E., Maksimenko V. A., Pisarchik A. N. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states // Physics Reports. 2021. Vol. 918. P. 1–133. doi: 10.1016/j.physrep.2021.03.002.
  30. Pisarchik A. N., Maksimenko V. A., Hramov A. E. From novel technology to novel applications: Comment on “An integrated brain-machine interface platform with thousands of channels” by Elon Musk and Neuralink // Journal of Medical Internet Research. 2019. Vol. 21, no. 10. P. e16356. doi: 10.2196/16356.
  31. Maksimenko V. A., van Heukelum S., Makarov V. V., Kelderhuis J., Luttjohann A., Koronovskii A. A., Hramov A. E., Luijtelaar G. Absence seizure control by a brain computer interface // Scientific Reports. 2017. Vol. 7, no. 1. P. 2487. doi: 10.1038/s41598-017-02626-y.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies