Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to build the analytical model of the behavior of a harmonic wave in a nonlinear optical medium with periodically arranged nanofilms. Methods. The modernized method is presented of non-smooth transformation of the argument to eliminate the Dirac functions on the right side of the non-linear inhomogeneous differential equation describing linear polarized wave behavior within a non-linear optical medium with periodically arranged conducting nanofilms. Small parameter methods, in particular, the averaging method, is also used to find an approximate analytical solution. Results. The fully analytical model of the behavior of a linear polarized harmonic wave within a nonlinear optical medium with periodically arranged conducting nanofilms is constructed. Conclusion. For the case of propagation of a linearly polarized harmonic wave in a nonlinear optical medium with periodically arranged conducting nanofilms, the mathematical model based on the non-smooth argument transformation method is constructed. The model is fully analytical, all expressions are obtained directly from Maxwell’s equations by identical transformations. The limits of its applicability are determined by the limits of application of the wave theory of light. 

About the authors

Svetlana Anatolena Volkova

Astrakhan State Technical University

16 Tatischev Str. Astrakhan, Russia

Konstantin Anatol'evich Vytovtov

Институт проблем управления им. В.А. Трапезникова РАН

Профсоюзная 65

Elizaveta Aleksandrovna Barabanova

Институт проблем управления им. В.А. Трапезникова РАН

Профсоюзная 65

Sergey Anatolevich Hahomov

Francysk Skaryna Gomel State University

ORCID iD: 0000-0001-7068-7061
Scopus Author ID: 14419987900
Belarus, Mogilev, Shmidta 3

Dmitry Leonidovich Kovalenko

Francysk Skaryna Gomel State University

Belarus, Mogilev, Shmidta 3

Mihail Germanovich Ivanov

Moscow Power Engineering Institute (MPEI)

111250 Moscow, st. Krasnokazarmennaya, 14

References

  1. Бриллюэн Л., Пароди М. Распространение волн в периодических структурах. М.: Издательство иностранной литературы, 1959. 457 с.
  2. Yeh P. Optical Waves in Layered Media. New York: John Wiley & Sons, 1988. 416 p.
  3. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 719 с.
  4. Vytovtov K. A., Bulgakov A. A. Analytical investigation method for electrodynamics properties of periodic structures with magnetic layers // Telecommunications and Radio Engineering. 2006. Vol. 65, no. 11–15. P. 1307–1321. doi: 10.1615/TelecomRadEng.v65.i14.60.
  5. Vytovtov K. A. Analytical investigation of stratified isotropic media // Journal of the Optical Society of America A. 2005. Vol. 22, no. 4. P. 689–696. doi: 10.1364/JOSAA.22.000689.
  6. Kaur S., Saini D., Sappal A. Band gap simulations of one-dimensional photonic crystal // International Journal of Advanced Research in Computer Science and Electronics Engineering. 2012. Vol. 1, no. 2. P. 161–165.
  7. Zhu X., Zhang Y., Chandra D., Cheng S.-C., Kikkawa J. M., Yang S. Two-dimensional photonic crystals with anisotropic unit cells imprinted from PDMS membranes under elastic deformation // Proc. SPIE. 2009. Vol. 7223. P. 72231C. doi: 10.1117/12.809275.
  8. Luan P.-G., Ye Z. Two dimensional photonic crystals // arXiv:cond-mat/0105428. arXiv Preprint, 2001. doi: 10.48550/arXiv.cond-mat/0105428.
  9. Chutinan A., Noda S. Highly confined waveguides and waveguide bends in three-dimensional photonic crystal // Appl. Phys. Lett. 1999. Vol. 75, no. 24. P. 3739–3741. doi: 10.1063/1.125441.
  10. Prasad T., Colvin V., Mittleman D. Superprism phenomenon in three-dimensional macroporous polymer photonic crystals // Phys. Rev. B. 2003. Vol. 67, no. 16. P. 165103. DOI: 10.1103/ PhysRevB.67.165103.
  11. Gupta S. D. Nonlinear optics of stratified media // In: Wolf E. (ed.) Progress in Optics. Vol. 38. Amsterdam: Elsevier, 1998. P. 1–84. doi: 10.1016/S0079-6638(08)70349-4.
  12. Shen Y. R. The Principles of Nonlinear Optics. Chichester: Wiley, 1984. 576 p.
  13. Panasyuk G. Y., Schotland J. C., Markel V. A. Quantum theory of the electromagnetic response of metal nanofilms // Phys. Rev. B. 2011. Vol. 84, no. 15. P. 155460. doi: 10.1103/PhysRevB. 84.155460.
  14. Антонец И. В., Котов Л. Н., Некипелов С. В., Карпушов Е. Н. Проводящие и отражающие свойства тонких металлических пленок // Журнал технической физики. 2004. Т. 74, № 11. С. 102–106.
  15. Andreev A. V., Postnov S. S. Metallic nanofilms optical response description based on self-consistent theory // Journal of Physics: Conference Series. 2008. Vol. 129. P. 012046. doi: 10.1088/1742- 6596/129/1/012046.
  16. Матвеев В. А., Плешанов Н. К., Геращенко О. В., Байрамуков В.Ю. Комплексное исследование нанопленок титана, полученных методом магнетронного напыления // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2014. № 10. С. 34–39. doi: 10.7868/S0207352814100138.
  17. Pilipchuk V. N., Volkova S. A., Starushenko G. A. Study of a non-linear oscillator under parametric impulsive excitation using a non-smooth temporal transformation // Journal of Sound and Vibration. 1999. Vol. 222, no. 2. P. 307–328. doi: 10.1006/jsvi.1998.2067.
  18. Владимиров В. С. Обобщенные функции в математической физике. М.: Наука, 1979. 320 с.
  19. Pilipchuk V. N. A transformation for vibrating systems based on a non-smooth periodic pair of functions // Doklady AN Ukr. SSR Ser. A. 1988. Vol. 4. P. 37–40.
  20. Perestyuk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V. Differential Equations with Impulse Effects: Multivalued Right-hand Sides with Discontinuities. Berlin: Walter de Gruyter, 2011. 321 p.
  21. Моисеев Н. Н. Асимптотические методы нелинейной механики. М.: Наука, 1969. 380 c.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies