Self-oscillating systems with controlled phase of external force

封面

如何引用文章

全文:

详细

The purpose of this work is to study self-oscillatory systems under adaptive external action. This refers to the situation when the phase of the external action additionally depends on the dynamical variable of the oscillator. In a review plan, the results are presented for the case of a linear damped oscillator. Two cases of self-oscillatory systems are studied: the van der Pol oscillator and an autonomous quasi-periodic generator with three-dimensional phase space. Methods. Methods of charts of dynamical regimes and charts of Lyapunov exponents are used, as well as the construction of phase portraits and stroboscopic sections. Results. In a review plan, the results are presented for the case of a linear damped oscillator. Two cases of self-oscillatory systems are studied: the van der Pol oscillator and an autonomous quasi-periodic generator with a three-dimensional phase space. The pictures of characteristic dynamical regimes are described. Scenarios for the development of multidimensional chaos are described. Illustrations are given of the influence of the control parameter, which is responsible for the degree of dependence of the phase on the oscillator variable, on the dynamics of the system at different frequencies of action. Conclusion. The taling into account of the dependence of the phase on a dynamical variable leads to an extension of the tongues of subharmonic resonances, which are weakly expressed in the classical van der Pol oscillator. This is especially noticeable for even resonances of periods 2 and 4. For the generator of quasi-periodic oscillations in the non-autonomous case, three-frequency tori are observed, their regions begin to dominate with an increase in the adaptivity parameter, displacing the tongues of resonant two-frequency tori. A variety of multidimensional chaos characterized by an additional Lyapunov exponent close to zero is discovered, the possibility of developing hyperchaos as a result of destruction is shown.

作者简介

Darina Krylosova

Yuri Gagarin State Technical University of Saratov

ORCID iD: 0000-0003-1572-1049
SPIN 代码: 3784-8294
ul. Politechnicheskaya, 77, Saratov, 410054, Russia

Aleksandr Kuznetsov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0001-5528-1979
SPIN 代码: 8834-7169
Scopus 作者 ID: 56265919800
Researcher ID: ABT-4026-2022
ul. Zelyonaya, 38, Saratov, 410019, Russia

Yu. Sedova

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0001-7843-646X
ul. Zelyonaya, 38, Saratov, 410019, Russia

Nataliya Stankevich

National Research University "Higher School of Economics"; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ORCID iD: 0000-0002-4781-0567
Scopus 作者 ID: 13409207300
Researcher ID: I-9346-2014
ul. Myasnitskaya 20, Moscow, 101000, Russia

参考

  1. Best R. E. Phase-Locked Loops: Design, Simulation, and Applications. 6th ed. New York: McGrawHill, 2007. 489 p.
  2. Шалфеев В. Д., Матросов В. В. Нелинейная динамика систем фазовой синхронизации. Нижний Новгород: Издательство Нижегородского госуниверситета, 2013. 366 с.
  3. Kuznetsov N. V., Leonov G. A. Nonlinear Mathematical Models of Phase-Locked Loops. Cambridge Scientific Publisher, 2014. 218 p.
  4. Kuznetsov N. V., Belyaev Y. V., Styazhkina A. V., Tulaev A. T., Yuldashev M. V., Yuldashev R. V. Effects of PLL architecture on MEMS gyroscope performance // Gyroscopy and Navigation. 2022. Vol. 13, no. 1. P. 44–52. doi: 10.1134/S2075108722010047.
  5. Kuznetsov N. V., Lobachev M. Y., Yuldashev M. V., Yuldashev R. V., Tavazoei M. S. The gardner problem on the lock-in range of second-order type 2 phase-locked loops // IEEE Transactions on Automatic Control. 2023. P. 1–15. doi: 10.1109/TAC.2023.3277896.
  6. Ottesen J. T. Modelling the dynamical baroreflex-feedback control // Mathematical and Computer Modelling. 2000. Vol. 31, no. 4–5. P. 167–173. doi: 10.1016/S0895-7177(00)00035-2.
  7. Hall J. E. Guyton and Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences, 2015. 1147 p.
  8. Селезнев Е. П., Станкевич Н. В. Сложная динамика неавтономного осциллятора с управляемой фазой внешнего воздействия // Письма в ЖТФ. 2019. Т. 45, № 2. С. 59–62. DOI: 10.21883/ PJTF.2019.02.47227.17473.
  9. Krylosova D. A., Seleznev E. P., Stankevich N. V. Dynamics of non-autonomous oscillator with a controlled phase and frequency of external forcing // Chaos, Solitons & Fractals. 2020. Vol. 134. P. 109716. doi: 10.1016/j.chaos.2020.109716.
  10. Krylosova D., Seleznev E., Stankevich N. The simplest oscillators with adaptive properties // In: 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). 07–09 September 2020, Innopolis, Russia. IEEE, 2020. P. 140–143. doi: 10.1109/DCNAIR50402.2020.9216759.
  11. Polczynski K., Bednarek M., Awrejcewicz J. Magnetic oscillator under excitation with controlled initial phase // In: Awrejcewicz J., Kazmierczak M., Olejnik P., Mrozowski J. (eds) 16th International Conference Dynamical Systems – Theory and Applications. 6–9 December 2021 Lod´ z. DSTA, 2021. P. 400–401.
  12. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация: Фундаментальное нелинейное явление. М: Техносфера, 2003. 496 c.
  13. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex. Berlin: Springer, 2009. 426 p. doi: 10.1007/978-3-540-72128-4.
  14. Ланда П. С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 360 с.
  15. Ding E. J., Hemmer P. C. Winding numbers for the supercritical sine circle map // Physica D: Nonlinear Phenomena. 1988. Vol. 32, no 1. P. 153–160. doi: 10.1016/0167-2789(88)90092-9.
  16. Ivankov N. Y., Kuznetsov S. P. Complex periodic orbits, renormalization, and scaling for quasiperiodic golden-mean transition to chaos // Phys. Rev. E. 2001. Vol. 63, no. 4. P. 046210. DOI: 10.1103/ PhysRevE.63.046210.
  17. Kuznetsov A. P., Kuznetsov S. P., Mosekilde E., Stankevich N. V. Generators of quasiperiodic oscillations with three-dimensional phase space // The European Physical Journal Special Topics. 2013. Vol. 222, no. 10. P. 2391–2398. doi: 10.1140/epjst/e2013-02023-x.
  18. Kuznetsov A. P., Kuznetsov S. P., Shchegoleva N. A., Stankevich N. V. Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchronization and other phenomena // Physica D: Nonlinear Phenomena. 2019. Vol. 398. P. 1–12. doi: 10.1016/j.physd.2019.05.014.
  19. Matsumoto T. Chaos in electronic circuits // Proceedings of the IEEE. 1987. Vol. 75, no. 8. P. 1033–1057. doi: 10.1109/PROC.1987.13848.
  20. Анищенко В. С., Николаев С. М. Генератор квазипериодических колебаний. Бифуркация удвоения двумерного тора // Письма в ЖТФ. 2005. Т. 31, № 19. С. 88–94.
  21. Anishchenko V., Nikolaev S., Kurths J. Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions // Phys. Rev. E. 2006. Vol. 73, no. 5. P. 056202. doi: 10.1103/PhysRevE.73.056202.
  22. Anishchenko V., Nikolaev S., Kurths J. Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus // Phys. Rev. E. 2007. Vol. 76, no. 4. P. 046216. doi: 10.1103/PhysRevE. 76.046216.
  23. Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V. A simple autonomous quasiperiodic selfoscillator // Communications in Nonlinear Science and Numerical Simulation. 2010. Vol. 15, no. 6. P. 1676–1681. doi: 10.1016/j.cnsns.2009.06.027.
  24. Кузнецов А. П., Седова Ю. В. Воздействие гармонического сигнала на генератор квазипериодических колебаний Анищенко–Астахова // Письма в ЖТФ. 2022. Т. 48, № 4. С. 48–50. doi: 10.21883/PJTF.2022.04.52086.18925.
  25. Stankevich N. V., Kuznetsov A. P., Kurths J. Forced synchronization of quasiperiodic oscillations // Communications in Nonlinear Science and Numerical Simulation. 2015. Vol. 20, no. 1. P. 316–323. doi: 10.1016/j.cnsns.2014.04.020.
  26. Кузнецов А. П., Сатаев И. Р., Тюрюкина Л. В. Фазовая динамика возбуждаемых квазипериодических автоколебательных осцилляторов // Известия вузов. ПНД. 2010. Т. 18, № 4. С. 17–32. doi: 10.18500/0869-6632-2010-18-4-17-32.
  27. Кузнецов А. П., Сатаев И. Р., Тюрюкина Л. В. Вынужденная синхронизация двух связанных автоколебательных осцилляторов Ван дер Поля // Нелинейная динамика. 2011. Т. 7, № 3. С. 411–425. doi: 10.20537/nd1103001.
  28. Vitolo R., Broer H., Simo C. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems // Regular and Chaotic Dynamics. 2011. Vol. 16, no. 1–2. P. 154–184. doi: 10.1134/S1560354711010060.
  29. Broer H., Simo C., Vitolo R. Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing // Nonlinearity. 2002. Vol. 15, no. 4. P. 1205–1267. doi: 10.1088/0951- 7715/15/4/312.
  30. Broer H. W., Simo C., Vitolo R. Chaos and quasi-periodicity in diffeomorphisms of the solid torus // Discrete and Continuous Dynamical Systems - B. 2010. Vol. 14, no. 3. P. 871–905. doi: 10.3934/dcdsb.2010.14.871.
  31. Stankevich N.V., Shchegoleva N.A., Sataev I.R., Kuznetsov A.P. Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators // Journal of Computational and Nonlinear Dynamics. 2020. Vol. 15, no. 11. P. 111001. doi: 10.1115/1.4048025.
  32. Grines E. A., Kazakov A., Sataev I. R. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2022. Vol. 32, no. 9. P. 093105. doi: 10.1063/5.0098163.
  33. Karatetskaia E., Shykhmamedov A., Kazakov A. Shilnikov attractors in three-dimensional orientation-reversing maps // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021. Vol. 31, no. 1. P. 011102. doi: 10.1063/5.0036405.
  34. Kuznetsov A. P., Sedova Y. V., Stankevich N. V. Coupled systems with quasi-periodic and chaotic dynamics // Chaos, Solitons & Fractals. 2023. Vol. 169. P. 113278. doi: 10.1016/j.chaos.2023. 113278.
##common.cookie##