Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings

Cover Page

Cite item

Full Text

Abstract

The subject of this work is the study of local dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings. From a discrete model describing the dynamics of a great number of coupled oscillators, a transition has been made to a nonlinear integro-differential equation, continuously depending on time and space variable. A class of full-coupled systems has been considered. The main assumption is that the amount of delay in the couplings is large enough. This assumption opens the way to the use of special asymptotic methods of study. The parameters under which the critical case is realized in the problem of the equilibrium state stability have been distinguished. It is shown that they have infinite dimension. The analogues of normal forms — nonlinear boundary value problems of Ginzburg–Landau type have been constructed. In some cases, these boundary value problems contain integral components too. Their nonlocal dynamics describes the behavior of all solutions of the original equations in the balance state neighbourhood. Methods. As applied to the considered problems, methods of constructing quasinormal forms on central manifolds are developed. An algorithm for constructing the asymptotics of solutions based on the use of quasinormal forms for determining slowly varying amplitudes has been created. Results. Quasinormal forms that determine the dynamics of the original boundary value problem have been constructed. The dominant terms of asymptotic approximations for solutions of the considered chains have been obtained. On the basis of the given statements, a number of interesting dynamical effects have been revealed. For example, an infinite alternation of direct and reverse bifurcations when the delay coefficient increases. Their distinguishing feature is that they have two or three spatial variables. 

About the authors

Sergej Aleksandrovich Kashchenko

P. G. Demidov Yaroslavl State University

ORCID iD: 0000-0002-8777-4302
Scopus Author ID: 57079151400
ResearcherId: F-4208-2014
150000 Yaroslavl, Sovetskaya str., 14

References

  1. Kuznetsov A. P., Kuznetsov S. P., Sataev I. R., Turukina L. V. About Landau–Hopf scenario in a system of coupled self-oscillators // Physics Letters A. 2013. Vol. 377, no. 45–48. P. 3291–3295. doi: 10.1016/j.physleta.2013.10.013.
  2. Osipov G. V., Pikovsky A. S., Rosenblum M. G., Kurths J. Phase synchronization effects in a lattice of nonidentical Rossler oscillators // Phys. Rev. E. 1997. Vol. 55, no. 3. P. 2353–2361. doi: 10.1103/PhysRevE.55.2353.
  3. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press, 2001. 411 p. doi: 10.1017/CBO9780511755743.
  4. Dodla R., Sen A., Johnston G. L. Phase-locked patterns and amplitude death in a ring of delay coupled limit cycle oscillators // Phys. Rev. E. 2004. Vol. 69, no. 5. P. 056217. DOI: 10.1103/ PhysRevE.69.056217.
  5. Williams C. R. S., Sorrentino F., Murphy T. E., Roy R. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2013. Vol. 23, no. 4. P. 043117. doi: 10.1063/1.4829626.
  6. Rao R., Lin Z., Ai X., Wu J. Synchronization of epidemic systems with Neumann boundary value under delayed impulse // Mathematics. 2022. Vol. 10, no. 12. P. 2064. doi: 10.3390/math10122064.
  7. Van der Sande G., Soriano M. C., Fischer I., Mirasso C. R. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators // Phys. Rev. E. 2008. Vol. 77, no. 5. P. 055202. doi: 10.1103/PhysRevE.77.055202.
  8. Клиньшов В. В., Некоркин В. И. Синхронизация автоколебательных сетей с запаздывающими связями // Успехи физических наук. 2013. Т. 183, № 12. С. 1323–1336. doi: 10.3367/UFNr.0183. 201312c.1323.
  9. Heinrich G., Ludwig M., Qian J., Kubala B., Marquardt F. Collective dynamics in optomechanical arrays // Phys. Rev. Lett. 2011. Vol. 107, no. 4. P. 043603. doi: 10.1103/PhysRevLett.107.043603.
  10. Zhang M., Wiederhecker G. S., Manipatruni S., Barnard A., McEuen P., Lipson M. Synchronization of micromechanical oscillators using light // Phys. Rev. Lett. 2012. Vol. 109, no. 23. P. 233906. doi: 10.1103/PhysRevLett.109.233906.
  11. Lee T. E., Sadeghpour H. R. Quantum synchronization of quantum van der Pol oscillators with trapped ions // Phys. Rev. Lett. 2013. Vol. 111, no. 23. P. 234101. doi: 10.1103/PhysRevLett.111. 234101.
  12. Yanchuk S., Wolfrum M. Instabilities of stationary states in lasers with long-delay optical feedback // SIAM Journal on Applied Dynamical Systems. 2010. Vol. 9, no. 2. P. 519–535. doi: 10.20347/WIAS.PREPRINT.962.
  13. Grigorieva E. V., Haken H., Kashchenko S. A. Complexity near equilibrium in model of lasers with delayed optoelectronic feedback // In: 1998 International Symposium on Nonlinear Theory and its Applications (NOLTA’98). 14-17 September 1998, Crans-Montana, Switzerland. NOLTA Society, 1998. P. 495–498.
  14. Kashchenko S. A. Quasinormal forms for chains of coupled logistic equations with delay // Mathematics. 2022. Vol. 10, no. 15. P. 2648. doi: 10.3390/math10152648.
  15. Кащенко С. А. Динамика цепочки логистических уравнений c запаздыванием и с антидиффузионной связью // Доклады Российской академии наук. Математика, информатика, процессы управления. 2022. Т. 502, № 1. С. 23–27. doi: 10.31857/S2686954322010064.
  16. Thompson J. M. T., Stewart H. B. Nonlinear Dynamics and Chaos. 2nd edition. New York: Wiley, 2002. 460 p.
  17. Kashchenko S. A. Dynamics of advectively coupled Van der Pol equations chain // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021. Vol. 31, no. 3. P. 033147. DOI: 10.1063/ 5.0040689.
  18. Kanter I., Zigzag M., Englert A., Geissler F., Kinzel W. Synchronization of unidirectional time delay chaotic networks and the greatest common divisor // Europhysics Letters. 2011. Vol. 93, no. 6. P. 60003. doi: 10.1209/0295-5075/93/60003.
  19. Rosin D. P., Rontani D., Gauthier D. J., Scholl E. Control of synchronization patterns in neural-like Boolean networks // Phys. Rev. Lett. 2013. Vol. 110, no. 10. P. 104102. doi: 10.1103/PhysRevLett. 110.104102.
  20. Yanchuk S., Perlikowski P., Popovych O. V., Tass P. A. Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2011. Vol. 21, no. 4. P. 047511. doi: 10.1063/1.3665200.
  21. Klinshov V., Nekorkin V. Synchronization in networks of pulse oscillators with time-delay coupling // Cybernetics and Physics. 2012. Vol. 1, no. 2. P. 106–112.
  22. Клиньшов В. В. Коллективная динамика сетей активных элементов с импульсными связями: Обзор // Известия вузов. ПНД. 2020. Т. 28, № 5. С. 465–490. doi: 10.18500/0869-6632-2020- 28-5-465-490.
  23. Hale J. K. Theory of Functional Differential Equations. 2nd edition. New York: Springer, 1977. 366 p. doi: 10.1007/978-1-4612-9892-2.
  24. Hartman P. Ordinary Differential Equations. New York: Wiley, 1965. 632 p.
  25. Marsden J. E., McCracken M. F. The Hopf Bifurcation and Its Applications. New York: Springer, 1976. 408 p. doi: 10.1007/978-1-4612-6374-6.
  26. Кащенко С. А. О квазинормальных формах для параболических уравнений с малой диффузией // Докл. АН СССР. 1988. Т. 299, № 5. С. 1049–1052.
  27. Kaschenko S. A. Normalization in the systems with small diffusion // International Journal of Bifurcation and Chaos. 1996. Vol. 6, no. 6. P. 1093–1109. doi: 10.1142/S021812749600059X.
  28. Кащенко С. А. Уравнение Гинзбурга–Ландау – нормальная форма для дифференциально-разностного уравнения второго порядка с большим запаздыванием // Журнал вычислительной математики и математической физики. 1998. Т. 38, № 3. С. 457–465.
  29. Кащенко И. С., Кащенко С. А. Локальная динамика систем разностных и дифференциально-разностных уравнений // Известия вузов. ПНД. 2014. Т. 22, № 1. С. 71–92. doi: 10.18500/0869- 6632-2014-22-1-71-92.
  30. Кащенко С. А. Бифуркации в окрестности цикла при малых возмущениях с большим запаздыванием // Журнал вычислительной математики и математической физики. 2000. Т. 40, № 5. С. 693–702.
  31. Kashchenko S. A. Van der Pol equation with a large feedback delay // Mathematics. 2023. Vol. 11, no. 6. P. 1301. doi: 10.3390/math11061301.
  32. Grigorieva E. V., Kashchenko S. A. Rectangular structures in the model of an optoelectronic oscillator with delay // Physica D: Nonlinear Phenomena. 2021. Vol. 417. P. 132818. DOI: 10.1016/ j.physd.2020.132818.
  33. Григорьева Е. В., Кащенко С. А. Локальная динамика модели цепочки лазеров с оптоэлектронной запаздывающей однонаправленной связью // Известия вузов. ПНД. 2022. Т. 30, № 2. С. 189–207. doi: 10.18500/0869-6632-2022-30-2-189-207.
  34. Кащенко С. А. Квазинормальные формы в задаче о колебаниях пешеходных мостов // Доклады Российской академии наук. Математика, информатика, процессы управления. 2022. Т. 506, № 1. С. 49–53. doi: 10.31857/S2686954322050113.
  35. Kashchenko I., Kaschenko S. Infinite process of forward and backward bifurcations in the logistic equation with two delays // Nonlinear Phenomena in Complex Systems. 2019. Vol. 22, no. 4. P. 407–412. doi: 10.33581/1561-4085-2019-22-4-407-412.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies