Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain

Cover Page

Cite item

Full Text

Abstract

The purpose of the study is experimental verification of the proposed EEG analysis method based on the construction of a connectivity graph of the analyzed signal, in which the amplitudes are displayed by vertices, and their relative position relative to each other by arcs. The display of the EEG signal in the graph structure causes the appearance of cyclic structures with the possibility of calculating their numerical characteristics. As a result of the study, criteria for initialization of the initial conditions of the counting algorithm have been developed. The following parameters were calculated: the number of cycles and the Euler number in the EEG recording. Coil representations of graphs are given. The proposed algorithm has a scaling parameter, the choice of which affects the final results. The second free parameter of the proposed algorithm is the degree of artificial signal coarsening. Variants of the algorithm application for multichannel EEG signals with multichannel signal processing by channel-by-channel detection of semantic units and construction of a generalized semantic connectivity graph are considered. An example of an analyzed multichannel EEG signal, which was pre-processed with reduction of all amplitudes to natural numbers in accordance with the calculated characteristics, is given. An example of an EEG of a subject with closed eyes during quiet wakefulness and an EEG of a subject with open eyes is given. In Conclusion, it is shown that the final indicators can vary significantly (from zero to tens of thousands or more) depending on the particular derivation of the EEG channel. Analysis of the cyclic structures of the electroencephalogram seems to be a potential way to assess various human states due to the possibility of distinguishing them using the proposed method. The study has a limited, pilot character

About the authors

Vladimir V. Aristov

Федеральный исследовательский центр «Информатика и управление» РАН

Россия, 119333, г. Москва, ул. Вавилова, 44/2

Oleg Vital'evich Kubryak

National Research University "Moscow Power Engineering Institute"; Federal State Budgetary Scientific Institution "Research Institute of Normal Physiology named after P.K. Anokhin"

ORCID iD: 0000-0001-7296-5280
SPIN-code: 4789-2893
Scopus Author ID: 14042079400
ResearcherId: D-1303-2013
Krasnokazarmennaya 14, Moscow, 111250 Russia.

Ivan V. Stepanyan

Blagonravov Mechanical Engineering Research Institute of RAS

ORCID iD: 0000-0003-3176-5279
SPIN-code: 5644-6735
4, M. Kharitonyevskiy Pereulok, 101990 Moscow, the Russian Federation

References

  1. Freeman W. J. W.G. Walter: The living brain // In: Palm G., Aertsen A. (eds) Brain Theory. Berlin, Heidelberg: Springer, 1986. P. 237–238. doi: 10.1007/978-3-642-70911-1_17.
  2. Fontanillo Lopez C. A., Li G., Zhang D. Beyond technologies of electroencephalography-based brain-computer interfaces: A systematic review from commercial and ethical aspects // Front. Neurosci. 2020. Vol. 14. P. 611130. doi: 10.3389/fnins.2020.611130.
  3. Craik A., He Y., Contreras-Vidal J. L. Deep learning for electroencephalogram (EEG) classification tasks: a review // J. Neural Eng. 2019. Vol. 16, no. 3. P. 031001. doi: 10.1088/1741-2552/ab0ab5.
  4. Douibi K., Le Bars S., Lemontey A., Nag L., Balp R., Breda G. Toward EEG-based BCI applications for industry 4.0: Challenges and possible applications // Front. Hum. Neurosci. 2021. Vol. 15. P. 705064. doi: 10.3389/fnhum.2021.705064.
  5. Alimardani M., Hiraki K. Passive brain-computer interfaces for enhanced human-robot interaction // Front. Robot. AI. 2020. Vol. 7. P. 125. doi: 10.3389/frobt.2020.00125.
  6. Batista A. Brain-computer interfaces for basic neuroscience // Handbook of Clinical Neurology. 2020. Vol. 168. P. 233–247. doi: 10.1016/B978-0-444-63934-9.00017-2.
  7. Lotte F., Bougrain L., Cichocki A., Clerc M., Congedo M., Rakotomamonjy A., Yger F. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update // J. Neural Eng. 2018. Vol. 15, no. 3. P. 031005. doi: 10.1088/1741-2552/aab2f2.
  8. Schwilden H. Concepts of EEG processing: from power spectrum to bispectrum, fractals, entropies and all that // Best Practice & Research Clinical Anaesthesiology. 2006. Vol. 20, no. 1. P. 31–48. doi: 10.1016/j.bpa.2005.09.001.
  9. Анохин К. В. Когнитом: в поисках фундаментальной нейронаучной теории сознания // Журнал высшей нервной деятельности им. И.П. Павлова. 2021. T. 71, № 1. С. 39–71. doi: 10.31857/S0044467721010032.
  10. Побаченко С. В., Колесник А. Г., Бородин А. С., Калюжин В. В. Сопряженность параметров энцефалограммы мозга человека и электромагнитных полей шумановского резонатора по данным мониторинговых исследований // Биофизика. 2006. Т. 51, № 3. С. 534–538.
  11. Saroka K. S., Vares D. E., Persinger M. A. Similar spectral power densities within the Schumann resonance and a large population of quantitative electroencephalographic profiles: Supportive evidence for Koenig and Pobachenko // PLoS ONE. 2016. Vol. 11, no. 1. P. e0146595. doi: 10.1371/journal.pone.0146595.
  12. Ma Y., Shi W., Peng C.-K., Yang A. C. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches // Sleep Medicine Reviews. 2018. Vol. 37. P. 85–93. doi: 10.1016/j.smrv.2017.01.003.
  13. Lutz A., Lachaux J.-P., Martinerie J., Varela F. J. Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task // Proc. Natl. Acad. Sci. U. S. A. 2002. Vol. 99, no. 3. P. 1586–1591. doi: 10.1073/pnas.032658199.
  14. Kubryak O. The Anticipating heart // In: Nadin M. (eds) Anticipation and Medicine. Cham: Springer, 2017. P. 49–65. doi: 10.1007/978-3-319-45142-8_4.
  15. Adelhofer N., Schreiter M. L., Beste C. Cardiac cycle gated cognitive-emotional control in superior frontal cortices // NeuroImage. 2020. Vol. 222. P. 117275. doi: 10.1016/j.neuroimage.2020.117275.
  16. Heck D. H., Kozma R., Kay L. M. The rhythm of memory: how breathing shapes memory function // J. Neurophysiol. 2019. Vol. 122, no. 2. P. 563–571. doi: 10.1152/jn.00200.2019.
  17. Aristov V., Stepanyan I. Hypothesis of cyclic structures of pre- and consciousness as a transition in neuron-like graphs to a special type of symmetry // Symmetry. 2022. Vol. 14, no. 3. P. 505. doi: 10.3390/sym14030505.
  18. Stepanyan I. V., Mekler A. A. Chaotic algorithms of analysis of cardiovascular systems and artificial intelligence // In: Hu Z., Petoukhov S., He M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Vol. 1126 of Advances in Intelligent Systems and Computing. Cham: Springer, 2020. P. 231–240. doi: 10.1007/978-3-030-39162-1_21.
  19. Stepanyan I. V., Lednev M. Y., Aristov V. V. Genetic interpretation of neurosemantics and kinetic approach for studying complex nets: Theory and experiments // In: Hu Z., Petoukhov S., He M. (eds) Advances in Artificial Systems for Medicine and Education IV. AIMEE 2020. Vol. 1315 of Advances in Intelligent Systems and Computing. Cham: Springer, 2020. P. 13–28. doi: 10.1007/978-3-030-67133-4_2.
  20. Iakovidou N. D. Graph theory at the service of electroencephalograms // Brain Connect. 2017. Vol. 7, no. 3. P. 137–151. doi: 10.1089/brain.2016.0426.
  21. Sporns O. Graph theory methods: applications in brain networks // Dialogues in Clinical Neuroscience. 2018. Vol. 20, no. 2. P. 111–121. doi: 10.31887/DCNS.2018.20.2/osporns.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».