Transfer of passive particles in the velocity field of vortex tripole moving on a plane

Cover Page

Cite item

Full Text

Abstract

Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter. Consideration is limited to a particular case of a tripole with zero total vorticity. The influence of the speed values of vortex configuration movement on the processes of passive particle transport has been studied. Methods. The study was carried out numerically using algorithms based on the dynamical systems approaches including the construction of the Poincare map and the analysis of the dynamics of marker particles. Were carried out long ´ times calculations, corresponding to hundreds and thousands of turns around the tripole center. Integrators of high orders of accuracy were used to solve the Cauchy problems, which made it possible to adequacy of the calculation result control. Results. We found that transferring passive particles is fundamentally different depending on the speed of the tripole. A vast zone of chaotic dynamics forms in the neighborhood of the vortices when the velocity is low. This zone slowly shifts along with the tripole. There are subregions of active and slow mixing inside the chaos region. The possible stages of particle dynamics are: transfer from the region to the right of the tripole to the area to the left, vigorous mixing near the vortices, and slowly drifting to the region to the left of the tripole. At a high speed of vortex configuration in the entire chaotic region, the particles are strongly mixed. The vortex tripole removes particles from the vicinity of its initial position over long distances and practically does not capture new particles along its path. In intermediate situations, both processes can be realized at varying degrees. Conclusion. Non-trivial scenarios for the transport of passive particles by a vortex tripole, which can also occur in real vortex configurations of fluids, have been discovered and described.

About the authors

V. N. Govorukhin

Southern Federal University

ul. Bol`shaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia

References

  1. van Heijst G. J. F., Kloosterziel R. C. Tripolar vortices in a rotating fluid // Nature. 1989. Vol. 338, no. 6216. P. 569–571. doi: 10.1038/338569a0.
  2. Kloosterziel R. C., van Heijst G. J. F. An experimental study of unstable barotropic vortices in a rotating fluid // J. Fluid Mech. 1991. Vol. 223. P. 1–24. doi: 10.1017/S0022112091001301.
  3. Carnevale G. F., Kloosterziel R. C. Emergence and evolution of triangular vortices // J. Fluid Mech. 1994. Vol. 259. P. 305–331. doi: 10.1017/S0022112094000157.
  4. Trieling R. R., van Heijst G. J. F., Kizner Z. Laboratory experiments on multipolar vortices in a rotating fluid // Physics of Fluids. 2010. Vol. 22, no. 9. P. 094104. doi: 10.1063/1.3481797.
  5. Rostami M., Zeitlin V. Evolution of double-eye wall hurricanes and emergence of complex tripolar end states in moist-convective rotating shallow water model // Physics of Fluids. 2022. Vol. 34, no. 6. P. 066602. doi: 10.1063/5.0096554.
  6. Carton X., Legras B. The life-cycle of tripoles in two-dimensional incompressible flows // J. Fluid Mech. 1994. Vol. 267. P. 53–82. doi: 10.1017/S0022112094001114.
  7. Kizner Z., Khvoles R. The tripole vortex: Experimental evidence and explicit solutions // Phys. Rev. E. 2004. Vol. 70, no. 1. P. 016307. doi: 10.1103/PhysRevE.70.016307.
  8. Viudez A. A stable tripole vortex model in two-dimensional Euler flows // J. Fluid Mech. 2019. Vol. 878. P. R5. doi: 10.1017/jfm.2019.730.
  9. Кирхгоф Г. Механика: Лекции по математической физике. М.: Изд-во АН СССР, 1962. 404 с.
  10. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. 760 с.
  11. Helmholtz H. Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen // Journal fur die reine und angewandte Mathematik. 1858. Bd. 55. S. 25–55. doi: 10.1515/crll.1858.55.25.
  12. Aref H. Motion of three vortices // Physics of Fluids. 1979. Vol. 22, no. 3. P. 393–400. doi: 10.1063/1.862605.
  13. Борисов А. В., Мамаев И. С., Васькина А. В. Новые относительные равновесия в системе трех точечных вихрей в круговой области и их устойчивость // Нелинейная динамика. 2011. Т. 7, № 1. С. 119–138. doi: 10.20537/nd1101006.
  14. Kuznetsov L., Zaslavsky G. M. Passive particle transport in three-vortex flow // Phys. Rev. E. 2000. Vol. 61, no. 4. P. 3777–3792. doi: 10.1103/PhysRevE.61.3777.
  15. Leoncini X., Kuznetsov L., Zaslavsky G. M. Motion of three vortices near collapse // Physics of Fluids. 2000. Vol. 12, no. 8. P. 1911–1927. doi: 10.1063/1.870440.
  16. Yim H., Kim S.-C., Sohn S.-I. Motion of three geostrophic Bessel vortices // Physica D: Nonlinear Phenomena. 2022. Vol. 441. P. 133509. doi: 10.1016/j.physd.2022.133509.
  17. Grobli W. Spezielle Probleme uber die Bewegung geradliniger paralleler Wirbelfaden // Vier-teljahrsch. d. Naturforsch. Geselsch. 1877. Bd. 22. S. 129–165.
  18. Новиков Е. А. Динамика и статистика системы вихрей // ЖЭТФ. 1975. Т. 68, № 5. С. 1868–1882.
  19. Velasco Fuentes O. U., van Heijst G. J. F., van Lipzig N. P. M. Unsteady behaviour of a topographymodulated tripole // J. Fluid Mech. 1996. Vol. 307. P. 11–41. doi: 10.1017/S002211209600002X.
  20. Гудименко А. И., Захаренко А. Д. Движение трех вихрей с нулевой суммарной интенсивностью // Прикладная механика и техническая физика. 2010. Т. 51, № 3. С. 55–65.
  21. Aref H. Stirring by chaotic advection // J. Fluid Mech. 1984. Vol. 143. P. 1–21. DOI: 10.1017/ S0022112084001233.
  22. Govorukhin V. N., Morgulis A., Yudovich V. I., Zaslavsky G. M. Chaotic advection in compressible helical flow // Phys. Rev. E. 1999. Vol. 60, no. 3. P. 2788–2798. doi: 10.1103/PhysRevE.60.2788.
  23. Борисов А. В., Мамаев И. С., Рамоданов С. М. Основные принципы и модели динамической адвекции // Доклады Академии наук. 2010. Т. 432, № 1. С. 41–44.
  24. Ryzhov E. A., Koshel K. V. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow // Chaos. 2015. Vol. 25, no. 10. P. 103108. doi: 10.1063/1.4930897.
  25. Koshel K. V., Sokolovskiy M. A., Davies P. A. Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle // Fluid Dynamics Research. 2008. Vol. 40, no. 10. P. 695–736. doi: 10.1016/j.fluiddyn.2008.03.001.
  26. Aref H., Blake J. R., Budisiˇ c M., Cardoso S. S. S., Cartwright J. H. E., Clercx H. J. H., El Omari K., Feudel U., Golestanian R., Gouillart E., van Heijst G. F., Krasnopolskaya T. S., Le Guer Y., MacKay R. S., Meleshko V. V., Metcalfe G., Mezic I., De Moura A. P. S., Piro O., Speetjens M. F. M., Sturman R., Thiffeault J.-L., Tuval I. Frontiers of chaotic advection // Rev. Mod. Phys. 2017. Vol. 89, no. 2. P. 025007. doi: 10.1103/RevModPhys.89.025007.
  27. Говорухин В. Н. Численное исследование динамической системы, порождаемой CABC векторным полем // Известия вузов. ПНД. 2020. Т. 28, № 6. С. 633–642. doi: 10.18500/0869- 6632-2020-28-6-633-642.
  28. Петровская Н. В. Конечномерные модели динамики вихревых течений идеальной жидкости в квадратной области // Известия вузов. ПНД. 2009. Т. 17, № 6. С. 159–172. DOI: 10.18500/ 0869-6632-2009-17-6-159-172.
  29. Delbende I., Selcuk C., Rossi M. Nonlinear dynamics of two helical vortices: A dynamical system approach // Phys. Rev. Fluids. 2021.Vol. 6, no. 8. P. 084701. doi: 10.1103/PhysRevFluids.6.084701.
  30. Sengupta T. K., Singh N., Suman V. K. Dynamical system approach to instability of flow past a circular cylinder // J. Fluid Mech. 2010. Vol. 656. P. 82–115. doi: 10.1017/S0022112010001035.
  31. Prants S. V. Dynamical systems theory methods to study mixing and transport in the ocean // Physica Scripta. 2013. Vol. 87, no. 3. P. 038115. doi: 10.1088/0031-8949/87/03/038115.
  32. Ryzhov E. A., Koshel K. V., Carton X. J. Passive scalar advection in the vicinity of two point vortices in a deformation flow // European Journal of Mechanics - B/Fluids. 2012. Vol. 34. P. 121–130. doi: 10.1016/j.euromechflu.2012.01.005.
  33. Говорухин В. Н. Численный анализ динамики распределенных вихревых конфигураций // Журнал вычислительной математики и математической физики. 2016. Т. 56, № 8. C. 1491–1505. doi: 10.7868/S004446691608007X.
  34. Говорухин В. Н., Филимонова А. М. Анализ структуры плоских вихревых течений и их изменений во времени // Вычислительная механика сплошных сред. 2021. Т. 14, № 4. С. 367–376. doi: 10.7242/1999-6691/2021.14.4.30.
  35. Govorukhin V. N. An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length // Int. J. Numer. Meth. Fluids. 2023. Vol. 95, no. 4. P. 579–602. doi: 10.1002/fld.5163.
  36. Metcalfe G., Lester D., Trefry M. A primer on the dynamical systems approach to transport in porous media // Transport in Porous Media. 2023. Vol. 146, no. 1–2. P. 55–84. doi: 10.1007/s11242- 022-01811-6.
  37. Борисов А. В., Мамаев И. С. Математические методы динамики вихревых структур. М.-Ижевск: Институт компьютерных исследований, 2005. 368 c.
  38. Зиглин С. Л. Неинтегрируемость задачи о движении четырех точечных вихрей // Доклады Академии наук СССР. 1980. Т. 250, № 6. С. 1296–1300.
  39. Aref H. Stability of relative equilibria of three vortices // Physics of Fluids. 2009. Vol. 21, no. 9. P. 094101. doi: 10.1063/1.3216063.
  40. Kizner Z. Stability of point-vortex multipoles revisited // Physics of Fluids. 2011. Vol. 23, no. 6. P. 064104. doi: 10.1063/1.3596270.
  41. Rott N. Three-vortex motion with zero total circulation // Zeitschrift fur angewandte Mathematik ¨ und Physik ZAMP. 1989. Vol. 40, no. 4. P. 473–494. doi: 10.1007/BF00944801.
  42. Арнольд В. И., Козлов В. В., Нейштадт А. И. Математические аспекты классической и небесной механики // Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления». Т. 3. М.: ВИНИТИ, 1985. С. 5–290.
  43. Де Ла Яве Р. Введение в КАМ-теорию. М.–Ижевск: Институт компьютерных исследований, 2003. 176 с.
  44. Говорухин В. Н. О выборе метода интегрирования уравнений движения множества жидких частиц // Журнал вычислительной математики и математической физики. 2014. Т. 54, № 4. С. 697–710. doi: 10.7868/S0044466914040073.
  45. Hairer E., Wanner G., Lubich C. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Vol. 31 of Springer Series in Computational Mathematics. Berlin, Heidelberg: Springer, 2002. 515 p. doi: 10.1007/978-3-662-05018-7.
  46. Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений: Нежёсткие задачи. М.: Мир, 1990. 512 с.
  47. Verner J. H. Numerically optimal Runge–Kutta pairs with interpolants // Numerical Algorithms. 2010. Vol. 53, no. 2–3. P. 383–396. doi: 10.1007/s11075-009-9290-3.
  48. Prince P. J., Dormand J. R. High order embedded Runge-Kutta formulae // Journal of Computational and Applied Mathematics. 1981. Vol. 7, no. 1. P. 67–75. doi: 10.1016/0771-050X(81)90010-3.
  49. Govorukhin V. ode87 Integrator [Electronic resource] // MATLAB Central File Exchange. Retrieved February 28, 2023. Available from: https://www.mathworks.com/matlabcentral/fileexchange/ 3616-ode87-integrator.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies