Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata

Cover Page

Cite item

Full Text

Abstract

Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a "carrier agent" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.

About the authors

Aleksej Vladimirovich Shabunin

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Бейли Н. Математика в биологии и медицине. М.: Мир, 1970. 326 с.
  2. Марчук Г. И. Математические модели в иммунологии: Вычислительные методы и эксперименты. М.: Наука, 1991. 276 c.
  3. Hethcote H. W. The mathematics of infectious diseases // SIAM Review. 2000. Vol. 42, no. 4. P. 599–653. doi: 10.1137/S0036144500371907.
  4. Андерсон Р., Мэй Р. Инфекционные болезни человека: Динамика и контроль. М.: Мир, 2004. 784 c.
  5. Serfling R. E. Methods for current statistical analysis of excess pneumonia-influenza deaths // Public Health Reports. 1963. Vol. 78, no. 6. P. 494–506. doi: 10.2307/4591848.
  6. Burkom H. S., Murphy S. P., Shmueli G. Automated time series forecasting for biosurveillance // Statistics in Medicine. 2007. Vol. 26, no. 22. P. 4202–4218. doi: 10.1002/sim.2835.
  7. Pelat C., Boelle P.-Y., Cowling B. J., Carrat F., Flahault A., Ansart S., Valleron A.-J. Online detection and quantification of epidemics // BMC Medical Informatics and Decision Making. 2007. Vol. 7. P. 29. doi: 10.1186/1472-6947-7-29.
  8. Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proc. R. Soc. Lond. A. 1927. Vol. 115, no. 772. P. 700–721. doi: 10.1098/rspa.1927.0118.
  9. Bailey N. T. J. The Mathematical Theory of Infectious Diseases and Its Applications. 2nd edition. London: Griffin, 1975. 413 p.
  10. Boccara N., Cheong K. Automata network SIR models for the spread of infectious diseases in populations of moving individuals // Journal of Physics A: Mathematical and General. 1992. Vol. 25, no. 9. P. 2447–2461. doi: 10.1088/0305-4470/25/9/018.
  11. Sirakoulis G. C., Karafyllidis I., Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation // Ecological Modelling. 2000. Vol. 133, no. 3. P. 209–223. doi: 10.1016/S0304-3800(00)00294-5.
  12. Шабунин А. В. SIRS-модель распространения инфекций с динамическим регулированием численности популяции: Исследование методом вероятностных клеточных автоматов // Известия вузов. ПНД. 2019. T. 27, № 2. C. 5–20. doi: 10.18500/0869-6632-2019-27-2-5-20.
  13. Шабунин А. В. Синхронизация процессов распространения инфекций во взаимодействующих популяциях: Моделирование решетками клеточных автоматов // Известия вузов. ПНД. 2020. T. 28, № 4. С. 383–396. doi: 10.18500/0869-6632-2020-28-4-383-396.
  14. Hamer W. H. Epidemic disease in England – the evidence of variability and persistence of type // The Lancet. 1906. Vol. 1. P. 733–739.
  15. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Dordrecht: Springer, 1992. 502 p. doi: 10.1007/978-94-015-7920-9.
  16. Пеpеваpюxа А.Ю. Непрерывная модель трех сценариев инфекционного процесса при факторах запаздывания иммунного ответа // Биофизика. 2021. Т. 66, № 2. С. 384–407. doi: 10.31857/S0006302921020204.
  17. Переварюха А.Ю. Модель адаптационного противодействия индуцированной биотической среды в инвазионном процессе // Известия вузов. ПНД. 2022. T. 30, № 4. С. 436–455. doi: 10.18500/0869-6632-2022-30-4-436-455.
  18. Шабунин А. В. Гибридная SIRS-модель распространения инфекций // Известия вузов. ПНД. 2022. T. 30, № 6. С. 717–731. doi: 10.18500/0869-6632-003014.
  19. Кобринский Н. Е., Трахтенберг Б. А. Введение в теорию конечных автоматов. М: Физматгиз, 1962. 405 с.
  20. Тоффоли Т., Марголус Н. Машины клеточных автоматов. М.: Мир, 1991. 283 с.
  21. Ванаг В. К. Исследование пространственно распределенных динамических систем методами вероятностного клеточного автомата // УФН. 1999. Т. 169, № 5. С. 481–505. DOI: 10.3367/ UFNr.0169.199905a.0481.
  22. Provata A., Nicolis G., Baras F. Oscillatory dynamics in low-dimensional supports: A lattice Lotka–Volterra model // J. Chem. Phys. 1999. Vol. 110, no. 17. P. 8361–8368. DOI: 10.1063/ 1.478746.
  23. Shabunin A. V., Baras F., Provata A. Oscillatory reactive dynamics on surfaces: A lattice limit cycle model // Phys. Rev. E. 2002. Vol. 66, no. 3. P. 036219. doi: 10.1103/PhysRevE.66.036219.
  24. Tsekouras G., Provata A., Baras F. Waves and their interactions in the lattice Lotka–Volterra mode // Известия вузов. ПНД. 2003. Т. 11, № 2. С. 63–71.
  25. Boccara N., Cheong K. Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals // Journal of Physics A: Mathematical and General. 1993. Vol. 26, no. 15. P. 3707–3717. doi: 10.1088/0305- 4470/26/15/020.
  26. Benyoussef A., HafidAllah N. E., ElKenz A., Ez-Zahraouy H., Loulidi M. Dynamics of HIV infection on 2D cellular automata // Physica A. 2003. Vol. 322. P. 506–520. doi: 10.1016/S0378- 4371(02)01915-5.
  27. Fujisaka H., Yamada T. Stability theory of synchronized motion in coupled-oscillator systems // Progress of Theoretical Physics. 1983. Vol. 69, no. 1. P. 32–47. doi: 10.1143/PTP.69.32.
  28. Yamada T., Fujisaka H. Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach // Progress of Theoretical Physics. 1983. Vol. 70, no. 5. P. 1240–1248. doi: 10.1143/PTP.70.1240.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».