Influence of parametric instability on spin pumping by dipole-exchange magnetostatic surface waves in YIG–Pt structures

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to study the influence of four-magnon (4M) parametric instability on spin pumping by dipole-exchange magnetostatic surface waves (MSSW) with the help of the inverse spin Hall effect (ISHE) in structures based on yttrium-iron garnet (YIG) and platinum (Pt). Methods. The experiments were carried out using the delay line structures based on YIG(900 nm)/Pt(9 nm) where electromotive force (EMF) induced by ISHE demonstrates a growth at the frequencies of the resonant interaction between MSSW and volume exchange modes. The frequency dependencies of the amplitude and phase for the delay line structure and EMF (U(f)) from the platinum layer were studied as a function of the MSSW power. Results. It was shown that the resonant EMF growth at the frequencies of dipole-exchange resonances is caused by the presence of Van Hove singularities in the density of states for spin waves at such frequencies that leads to an increase in the efficiency of electron-magnon scattering at the YIG–Pt interface. A growth in MSSW power beyond the threshold of 4M instability development results in a “smoothing” of resonant particularities in the EMF frequency dependence U(f) that can be explained by decreasing efficiency of spin pumping due to destruction of dipole-exchange resonances and related singularities in the density of states of spin waves. Conclusion. Obtained results may be of interest for the development of highly sensitive spin current detectors, as well as for the implementation of spintronic devices. 

About the authors

M. E. Seleznev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Y. V. Nikulin

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Y. V. Khivintsev

Saratov State University; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

S. L. Vysotskii

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Aleksandr Vladimirovich Kozhevnikov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Valentin Konstantinovich Sakharov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Galina Mihajlovna Dudko

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences; Research and Production Complex "Precision Equipment"

ul. Zelyonaya, 38, Saratov, 410019, Russia

Y. A. Filimonov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

References

  1. Kajiwara Y., Harii K., Takahashi S., Ohe J., Uchida K., Mizuguchi M., Umezawa H., Kawai H., Ando K., Takanashi K., Maekawa S., Saitoh E. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator // Nature. 2010. Vol. 464, no. 7286. P. 262–266. doi: 10.1038/nature08876.
  2. Sinova J., Valenzuela S. O., Wunderlich J., Back C. H., Jungwirth T. Spin Hall effects // Rev. Mod. Phys. 2015. Vol. 87, no. 4. P. 1213–1260. doi: 10.1103/RevModPhys.87.1213.
  3. Althammer M. Pure spin currents in magnetically ordered insulator/normal metal heterostructures // J. Phys. D: Appl. Phys. 2018. Vol. 51, no. 31. P. 313001. doi: 10.1088/1361-6463/aaca89.
  4. Brataas A., van Wees B., Klein O., de Loubens G., Viret M. Spin insulatronics // Physics Reports. 2020. Vol. 885. P. 1–27. doi: 10.1016/j.physrep.2020.08.006.
  5. Sandweg C. W., Kajiwara Y., Ando K., Saitoh E., Hillebrands B. Enhancement of the spin pumping efficiency by spin wave mode selection // Appl. Phys. Lett. 2010. Vol. 97, no. 25. P. 252504. doi: 10.1063/1.3528207.
  6. Chumak A. V., Serga A. A., Jungfleisch M. B., Neb R., Bozhko D. A., Tiberkevich V. S., Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect // Appl. Phys. Lett. 2012. Vol. 100, no. 8. P. 082405. doi: 10.1063/1.3689787.
  7. Balinsky M., Ranjbar M., Haidar M., Durrenfeld P., Khartsev S., Slavin A., Akerman J., Dumas R. K. Spin pumping and the inverse spin-hall effect via magnetostatic surface spin-wave modes in Yttrium-Iron garnet/platinum bilayers // IEEE Magn. Lett. 2015. Vol. 6. P. 3000604. doi: 10.1109/LMAG.2015.2471276.
  8. Iguchi R., Ando K., Qiu Z., An T., Saitoh E., Sato T. Spin pumping by nonreciprocal spin waves under local excitation // Appl. Phys. Lett. 2013. Vol. 102, no. 2. P. 022406. doi: 10.1063/1.4775685.
  9. d’Allivy Kelly O., Anane A., Bernard R., Ben Youssef J., Hahn C., Molpeceres A. H., Carretero C., Jacquet E., Deranlot C., Bortolotti P., Lebourgeois R., Mage J.-C., de Loubens G., Klein O., Cros V., Fert A. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system // Appl. Phys. Lett. 2013. Vol. 103, no. 8. P. 082408. doi: 10.1063/1.4819157.
  10. Uchida K., Xiao J., Adachi H., Ohe J., Takahashi S., Ieda J., Ota T., Kajiwara Y., Umezawa H., Kawai H., Bauer G. E. W., Maekawa S., Saitoh E. Spin Seebeck insulator // Nature Materials. 2010. Vol. 9, no. 11. P. 894–897. doi: 10.1038/nmat2856.
  11. Agrawal M., Vasyuchka V. I., Serga A. A., Kirihara A., Pirro P., Langner T., Jungfleisch M. B., Chumak A. V., Papaioannou E. T., Hillebrands B. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect // Phys. Rev. B. 2014. Vol. 89, no. 22. P. 224414. doi: 10.1103/PhysRevB.89.224414.
  12. Sandweg C. W., Kajiwara Y., Chumak A. V., Serga A. A., Vasyuchka V. I., Jungfleisch M. B., Saitoh E., Hillebrands B. Spin pumping by parametrically excited exchange magnons // Phys. Rev. Lett. 2011. Vol. 106, no. 21. P. 216601. doi: 10.1103/PhysRevLett.106.216601.
  13. Kurebayashi Н., Dzyapko O., Demidov V. E., Fang D., Ferguson A. J. Demokritov S. O. Controlled enhancement of spin-current emission by three-magnon splitting // Nature Materials. 2011. Vol. 10, no. 9. P. 660–664. doi: 10.1038/nmat3053.
  14. Kurebayashi H., Dzyapko O., Demidov V. E., Fang D., Ferguson A. J., Demokritov S. O. Spin pumping by parametrically excited short-wavelength spin waves // Appl. Phys. Lett. 2011. Vol. 99, no. 16. P. 162502. doi: 10.1063/1.3652911.
  15. Manuilov S. A., Du C. H., Adur R., Wang H. L., Bhallamudi V. P., Yang F. Y., Hammel P. C. Spin pumping from spinwaves in thin film YIG // Appl. Phys. Lett. 2015. Vol. 107, no. 4. P. 042405. doi: 10.1063/1.4927451.
  16. Tveten E. G., Brataas A., Tserkovnyak Y. Electron-magnon scattering in magnetic heterostructures far out of equilibrium // Phys. Rev. B. 2015. Vol. 92, no. 18. P. 180412. doi: 10.1103/PhysRevB. 92.180412.
  17. Saitoh E., Ueda M., Miyajima H., Tatara G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect // Appl. Phys. Lett. 2006. Vol. 88, no. 18. P. 182509. doi: 10.1063/1.2199473.
  18. Maekawa S., Adachi H., Uchida K., Ieda J., Saitoh E. Spin current: Experimental and theoretical aspects // J. Phys. Soc. Jpn. 2013. Vol. 82, no. 10. P. 102002. doi: 10.7566/JPSJ.82.102002.
  19. Van Hove L. The occurrence of singularities in the elastic frequency distribution of a crystal // Phys. Rev. 1953. Vol. 89, no. 6. P. 1189–1193. doi: 10.1103/PhysRev.89.1189.
  20. Damon R. W., Eshbach J. R. Magnetostatic modes of a ferromagnet slab // Journal of Physics and Chemistry of Solids. 1961. Vol. 19, no. 3–4. P. 308–320. doi: 10.1016/0022-3697(61)90041-5.
  21. Nikulin Y. V., Seleznev М. Е., Khivintsev Y. V., Sakharov V. К., Pavlov E. S., Vysotskii S. L., Kozhevnikov A. V., Filimonov Y. A. EMF generation by propagating magnetostatic surface waves in integrated thin-film Pt/YIG structure // Semiconductors. 2020. Vol. 54, no. 12. P. 1721–1724. doi: 10.1134/S106378262012026X.
  22. Селезнев М. Е., Никулин Ю. В., Хивинцев Ю. В., Высоцкий С. Л., Кожевников А. В., Сахаров В. К., Дудко Г. М., Павлов Е. С., Филимонов Ю. А. Влияние трехмагнонных распадов на генерацию ЭДС поверхностными магнитостатическими волнами в интегральных структурах ЖИГ– Pt // Известия вузов. ПНД. 2022. Т. 30, № 5. С. 617–643. doi: 10.18500/0869-6632- 003008.
  23. De Wames R. E., Wolfram T. Dipole-exchange spin waves in ferromagnetic films // J. Appl. Phys. 1970. Vol. 41, no. 3. P. 987–993. doi: 10.1063/1.1659049.
  24. Селезнев М. Е., Никулин Ю. В., Сахаров В. К., Хивинцев Ю. В., Кожевников А. В., Высоцкий С. Л., Филимонов Ю. А. Влияние резонансного взаимодействия поверхностных магнитостатических волн с обменными модами на генерацию ЭДC в структурах YIG/Pt // ЖТФ. 2021. Т. 91, № 10. С. 1504–1508. doi: 10.21883/JTF.2021.10.51363.136-21.
  25. Никулин Ю. В., Кожевников А. В., Высоцкий С. Л., Селезнев М. Е., Хивинцев Ю. В., Филимонов Ю. А. Исследование интерференции поверхностных магнитостатических волн с помощью обратного спинового эффекта Холла // ФТТ. 2022. Т. 64, № 9. С. 1293–1297. doi: 10.21883/FTT.2022.09.52822.21HH.
  26. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.: Физматлит, 1994. 464 с.
  27. Вашковский А. В., Стальмахов В. С., Шараевский Ю. П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Издательство Саратовского университета, 1993. 312 с.
  28. Львов В. С. Нелинейные спиновые волны. М.: Наука, 1987. 272 с.
  29. Castel V., Vlietstra N., Ben Youssef J., Van Wees B. J. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system // Appl. Phys. Lett. 2012. Vol. 101, no. 13. P. 132414. doi: 10.1063/1.4754837.
  30. Castel V., Vlietstra N., Van Wees B. J., Ben Youssef J. Frequency and power dependence of spin-current emission by spin pumping in a thin-film YIG/Pt system // Phys. Rev. B. 2012. Vol. 86, no. 13. P. 134419. doi: 10.1103/PhysRevB.86.134419.
  31. Jungfleisch M. B., Chumak A. V., Kehlberger A., Lauer V., Kim D. H., Onbasli M. C., Ross C. A., Klaui M., Hillebrands B. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect // Phys. Rev. B. 2015. Vol. 91, no. 13. P. 134407. doi: 10.1103/PhysRevB.91.134407.
  32. Watanabe S., Hirobe D., Shiomi Y., Iguchi R., Daimon S., Kameda M., Takahashi S., Saitoh E. Generation of megahertz-band spin currents using nonlinear spin pumping // Scientific Reports. 2017. Vol. 7, no. 1. P. 4576. doi: 10.1038/s41598-017-04901-4.
  33. Ando K., Saitoh E. Spin pumping driven by bistable exchange spin waves // Phys. Rev. Lett. 2012. Vol. 109, no. 2. P. 026602. doi: 10.1103/PhysRevLett.109.026602.
  34. Khivintsev Y. V., Filimonov Y. A., Nikitov S. A. Spin wave excitation in yttrium iron garnet films with micron-sized antennas // Appl. Phys. Lett. 2015. Vol. 106, no. 5. P. 052407.doi: 10.1063/1.4907626.
  35. Nur Kholid F., Hamara D., Terschanski M., Mertens F., Bossini D., Cinchetti M., McKenzie-Sell L., Patchett J., Petit D., Cowburn R., Robinson J., Barker J., Ciccarelli C. Temperature dependence of the picosecond spin Seebeck effect // Appl. Phys. Lett. 2021. Vol. 119, no. 3. P. 032401. doi: 10.1063/5.0050205.
  36. Медников А. М. Нелинейные эффекты при распространении поверхностных спиновых волн в пленках ЖИГ // ФТТ. 1981. Т. 23, № 1. С. 242–245.
  37. Темирязев А. Г. Механизм преобразования частоты поверхностной магнитостатической волны в условиях трехмагнонного распада // ФТТ. 1987. Т. 29, № 2. С. 313–319.
  38. Ползикова Н. И., Раевский А. О., Темирязев А. Г. Влияние обменного взаимодействия на границу трехмагнонного распада волны Дэймона–Эшбаха в тонких пленках ЖИГ // ФТТ. 1984. Т. 26, № 11. С. 3506–3508.
  39. Казаков Г. Т., Кожевников А. В., Филимонов Ю. А. Четырехмагнонный распад поверхностных магнитостатических волн в пленках железо-иттриевого граната // ФТТ. 1997. Т. 39, № 2. С. 330–338.
  40. Казаков Г. Т., Кожевников А. В., Филимонов Ю. А. Влияние параметрически возбужденных спиновых волн на дисперсию и затухание поверхностных магнитостатических волн в ферритовых пленках // ЖЭТФ. 1999. Т. 115, № 1. С. 318–332.
  41. Гуляев Ю. В., Бугаев А. С., Зильберман П. Е., Игнатьев И. А., Коновалов А. Г., Луговской А. В., Медников А. М., Нам Б. П., Николаев Е. И. Гигантские осцилляции прохождения квазиповерхностной спиновой волны через тонкую пленку железо-иттриевого граната // Письма в ЖЭТФ. 1979. Т. 30, № 9. P. 600–603.
  42. Гуляев Ю. В., Зильберман П. Е., Луговской А. В. Влияние неоднородного обмена и диссипации на распространение поверхностных волн Деймона-Эшбаха в ферромагнитной пластине // ФТТ. 1981. Т. 23, № 4. С. 1136–1142.
  43. Donahue M. J., Porter D. G. OOMMF User’s Guide. Interagency Report NISTIR 6376. Gaithersburg, MD: National Institute of Standards and Technology, 1999. 94 p. doi: 10.6028/NIST.IR.6376.
  44. Dvornik M., Au Y., Kruglyak V. V. Micromagnetic Simulations in Magnonics. In: Demokritov S., Slavin A. (eds) Magnonics. Vol. 125 of Topics in Applied Physics. Berlin: Springer, 2013. P. 101–115. doi: 10.1007/978-3-642-30247-3_8.
  45. Сахаров В. К., Хивинцев Ю. В., Дудко Г. М., Джумалиев А. С., Высоцкий С. Л., Стогний А. И., Филимонов Ю. А. Особенности распространения спиновых волн в магнонных кристаллах с неоднородным распределением намагниченности по толщине // ФТТ. 2022. Т. 64, № 9. С. 1255–1262. doi: 10.21883/FTT.2022.09.52815.11HH.
  46. Бугаев А. С., Галкин О. Л., Гуляев Ю. В., Зильберман П. Е. Увлечение электронов магнитостатической волной в слоистой структуре феррит-металл // Письма в ЖТФ. 1982. Т. 8, № 8. С. 485–488.
  47. Веселов A. Г., Высоцкий С. Л., Казаков Г. Т., Сухарев А. Г., Филимонов Ю. А. Поверхностные магнитостатические волны в металлизированных пленках ЖИГ // Радиотехника и электроника. 1994. Т. 39, № 12. С. 2067–2074.
  48. Филимонов Ю. А., Хивинцев Ю. В. Взаимодействие поверхностной магнитостатической и объемных упругих волн в металлизированной структуре ферромагнетик-диэлектрик // Радиотехника и электроника. 2002. Т. 47, № 8. С. 1002–1007.
  49. Сахаров В. К., Хивинцев Ю. В., Высоцкий С. Л., Стогний А. И., Дудко Г. М., Филимонов Ю. А. Влияние мощности входного сигнала на распространение поверхностных магнитостатических волн в плёнках железо-иттриевого граната на подложках кремния // Известия вузов. ПНД. 2017. Т. 25, № 1. С. 35–51. doi: 10.18500/0869-6632-2017-25-1-35-51.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies