Ring generator of neuron-like activity with tunable frequency

Cover Page

Cite item

Full Text

Abstract

The aim of the work is to build a radiophysical generator of neuron-like activity with a frequency tunable in various ways, corresponding to modern ideas about the structure of the hippocampus and the generation of pathological epileptic rhythms in it. Methods. The elements of the generator are radio engineering implementations of the complete FitzHugh– Nagumo neuron and the electronic implementation of a chemical synapse in the form of a sigmoid function with a delayed argument. The simulation was carried out in the SPICE simulator. Results. Various ways of introducing delay into the coupling are considered: an ideal delay line, a phase filter with a rheostat, one tunable Bessel filter, and a sequence of non-tunable Bessel filters. For circuit implementation, the approach using a Bessel filter with a rheostat is recognized as optimal as a compromise between simplicity and minimization of signal distortion. The dependences of the oscillation frequency on the number of elements in the ring and the delay time are constructed. The bistability of generation regimes is studied for certain values of the parameters. The effect of inclusion of inhibitory elements (interneurons) in the circuit is considered. Conclusion. The constructed ring generator models the experimentally observed properties of the dynamics of epileptic discharge fundamental frequency in limbic epilepsy. It is able to reproduce the occurrence of oscillations as a result of external short-term driving, smooth and sharp frequency tuning, the coexistence of different modes with the same parameters.

About the authors

Nikita Mikhailovich Egorov

Yuri Gagarin State Technical University of Saratov; Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Politechnicheskaya, 77, Saratov, 410054, Russia

Marina Vyacheslavovna Sysoeva

Yuri Gagarin State Technical University of Saratov

ul. Politechnicheskaya, 77, Saratov, 410054, Russia

Vladimir Ivanovich Ponomarenko

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Maksim Vyacheslavovich Kornilov

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Ilya Vyacheslavovich Sysoev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Lodi M., Shilnikov A. L., Storace M. Design principles for central pattern generators with preset rhythms // IEEE Transactions on Neural Networks and Learning Systems. 2020. Vol. 31, no. 9. P. 3658–3669. doi: 10.1109/TNNLS.2019.2945637.
  2. Kurkin S. A., Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D., Astakhov S. V., Hramov A. E. Central pattern generator based on self-sustained oscillator coupled to a chain of oscillatory circuits // Chaos. 2022. Vol. 32, no. 3. P. 033117. doi: 10.1063/5.0077789.
  3. Mahowald M., Douglas R. A silicon neuron // Nature. 1991. Vol. 354, no. 6354. P. 515–518. doi: 10.1038/354515a0.
  4. Rasche C., Douglas R. An improved silicon neuron // Analog Integrated Circuits and Signal Processing. 2000. Vol. 23, no. 3. P. 227–236. doi: 10.1023/A:1008357931826.
  5. van Schaik A. Building blocks for electronic spiking neural networks // Neural Networks. 2001. Vol. 14, no. 6–7. P. 617–628. doi: 10.1016/S0893-6080(01)00067-3.
  6. Дмитричев А. С., Касаткин Д. В., Клиньшов В. В., Кириллов С.Ю., Масленников О. В., Щапин Д. С., Некоркин В. И. Нелинейные динамические модели нейронов: обзор // Известия вузов. ПНД. 2018. Т. 26, № 4. С. 5–58. doi: 10.18500/0869-6632-2018-26-4-5-58.
  7. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical Journal. 1961. Vol. 1, no. 6. P. 445–466. doi: 10.1016/S0006-3495(61)86902-6.
  8. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proceedings of the IRE. 1962. Vol. 50, no. 10. P. 2061–2070. doi: 10.1109/JRPROC.1962.288235.
  9. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve // The Journal of Physiology. 1952. Vol. 117, no. 4. P. 500–544. doi: 10.1113/jphysiol.1952.sp004764.
  10. Binczak S., Jacquir S., Bilbault J.-M., Kazantsev V. B., Nekorkin V. I. Experimental study of electrical FitzHugh–Nagumo neurons with modified excitability // Neural Networks. 2006. Vol. 19, no. 5. P. 684–693. doi: 10.1016/j.neunet.2005.07.011.
  11. Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D., Hramov A. E. Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators // Nonlinear Dynamics. 2019. Vol. 98, no. 1. P. 735–748. doi: 10.1007/s11071-019-05224-x.
  12. Егоров Н. М., Пономаренко В. И., Сысоев И. В., Сысоева М. В. Имитационное моделирование эпилептиформной активности сетью нейроподобных радиотехнических осцилляторов // Журнал технической физики. 2021. Т. 91, № 3. С. 519–528. doi: 10.21883/JTF.2021.03. 50532.237-20.
  13. Егоров Н. М., Пономаренко В. И., Мельникова С. Н., Сысоев И. В., Сысоева М. В. Общность механизмов возникновения безаттракторных колебательных режимов в радиотехнических моделях таламокортикальной сети мозга // Известия вузов. ПНД. 2021. T. 29, № 6. C. 927–942. doi: 10.18500/0869-6632-2021-29-6-927-942.
  14. Egorov N. M., Kulminskiy D. D., Sysoev I. V., Ponomarenko V. I., Sysoeva M. V. Transient dynamics in electronic neuron-like circuits in application to modeling epileptic seizures // Nonlinear Dynamics. 2022. Vol. 108, no. 4. P. 4231–4242. doi: 10.1007/s11071-022-07379-6.
  15. Капустников А. А., Сысоева М. В., Сысоев И. В. Моделирование пик-волновых разрядов в мозге малыми сетями нейроосцилляторов // Математическая биология и биоинформатика. 2020. Т. 15, № 2. С. 138–147. doi: 10.17537/2020.15.138.
  16. Kapustnikov A. A., Sysoeva M. V., Sysoev I. V. Transient dynamics in a class of mathematical models of epileptic seizures // Communications in Nonlinear Science and Numerical Simulation. 2022. Vol. 109. P. 106284. doi: 10.1016/j.cnsns.2022.106284.
  17. Egorov N. M., Sysoev I. V., Ponomarenko V. I., Sysoeva M. V. Epileptiform activity generation by an ensemble of complete electronic FitzHugh–Nagumo oscillators connected by a sigmoid couplings // In: Proceedings of SPIE. Vol. 12194. Computational Biophysics and Nanobiophotonics. Bellingham: SPIE, 2022. P. 1219403. doi: 10.1117/12.2623993.
  18. Egorov N. M., Sysoev I. V., Ponomarenko V. I., Sysoeva M. V. Complex regimes in electronic neuron-like oscillators with sigmoid coupling // Chaos, Solitons & Fractals. 2022. Vol. 160. P. 112171. doi: 10.1016/j.chaos.2022.112171.
  19. Rabinovich M. I., Zaks M. A., Varona P. Sequential dynamics of complex networks in mind: Consciousness and creativity // Physics Reports. 2020. Vol. 883. P. 1–32. doi: 10.1016/j.physrep. 2020.08.003.
  20. Wang Q., Perc M., Duan Z., Chen G. Impact of delays and rewiring on the dynamics of smallworld neuronal networks with two types of coupling // Physica A: Statistical Mechanics and its Applications. 2010. Vol. 389, no. 16. P. 3299–3306. doi: 10.1016/j.physa.2010.03.031.
  21. Winder S. Analog and Digital Filter Design. 2nd edition. USA: Elsevier, 2002. 458 p. DOI: 10.1016/ B978-0-7506-7547-5.X5000-3.
  22. Banerjee T., Biswas D., Sarkar B. C. Anticipatory, complete and lag synchronization of chaos and hyperchaos in a nonlinear delay-coupled time-delayed system // Nonlinear Dynamics. 2013. Vol. 72, no. 1–2. P. 321–332. doi: 10.1007/s11071-012-0716-4.
  23. Srinivasan K., Raja Mohamed I., Murali K., Lakshmanan M., Sinha S. Design of time delayed chaotic circuit with threshold controller // International Journal of Bifurcation and Chaos. 2011. Vol. 21, no. 3. P. 725–735. doi: 10.1142/S0218127411028751.
  24. Karki J. Active Low-Pass Filter Design. Texas: Texas Instruments, 2000. 24 p.
  25. Cao P., Fan H., Wang D., Shu H., Yang B., Han Y., Dong J. Compensation circuit design for tuned half-wavelength transmission lines based on Bessel filter // International Journal of Electrical Power & Energy Systems. 2022. Vol. 134. P. 107335. doi: 10.1016/j.ijepes.2021.107335.
  26. Buscarino A., Fortuna L., Frasca M., Sciuto G. Design of time-delay chaotic electronic circuits // IEEE Transactions on Circuits and Systems I: Regular Papers. 2011. Vol. 58, no. 8. P. 1888–1896. doi: 10.1109/TCSI.2011.2107190.
  27. Rudy B., Fishell G., Lee S., Hjerling-Leffler J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons // Developmental Neurobiology. 2011. Vol. 71, no. 1. P. 45–61. doi: 10.1002/dneu.20853.
  28. Vinogradova O. S. Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information // Hippocampus. 2001. Vol. 11, no. 5. P. 578–598. doi: 10.1002/hipo.1073.
  29. Sysoev I. V., Kornilov M. V., Makarova N. A., Sysoeva M. V., Vinogradova L. V. Modeling limbic seizure initiation with an ensemble of delay coupled neuroscillator // In: Lacarbonara W., Balachandran B., Leamy M. J., Ma J., Tenreiro Machado J. A., Stepan G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Cham: Springer, 2022. P. 73–81. doi: 10.1007/978-3-030-81170-9_7.
  30. Nelson T. S., Suhr C. L., Freestone D. R., Lai A., Halliday A. J., McLean K. J., Burkitt A. N., Cook M. J. Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy // International Journal of Neural Systems. 2011. Vol. 21, no. 2. P. 163–173. doi: 10.1142/S0129065711002717.
  31. van Heukelum S., Kelderhuis J., Janssen P., van Luijtelaar G., Luttjohann A. Timing of high-frequency cortical stimulation in a genetic absence model // Neuroscience. 2016. Vol. 324. P. 191–201. doi: 10.1016/j.neuroscience.2016.02.070.
  32. Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks // Electroencephalography and Clinical Neurophysiology. 1991. Vol. 79, no. 2. P. 81–93. doi: 10.1016/0013-4694(91)90044-5.
  33. Schnitzler A., Gross J. Normal and pathological oscillatory communication in the brain // Nature Reviews Neuroscience. 2005. Vol. 6, no. 4. P. 285–296. doi: 10.1038/nrn1650.
  34. Benca R., Duncan M. J., Frank E., McClung C., Nelson R. J., Vicentic A. Biological rhythms, higher brain function, and behavior: Gaps, opportunities, and challenges // Brain Research Reviews. 2009. Vol. 62, no. 1. P. 57–70. doi: 10.1016/j.brainresrev.2009.09.005.
  35. Buzsaki G. Rhythms of the Brain. Oxford: Oxford University Press, 2006. 448 p. DOI: 10.1093/ acprof:oso/9780195301069.001.0001.
  36. Rudrauf D., Douiri A., Kovach C., Lachaux J.-P., Cosmelli D., Chavez M., Adam C., Renault B., Martinerie J., Le Van Quyen M. Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals // NeuroImage. 2006. Vol. 31, no. 1. P. 209–227. doi: 10.1016/j.neuroimage.2005.11.021.
  37. Good L. B., Sabesan S., Marsh S. T., Tsakalis K., Treiman D., Iasemidis L. Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents // International Journal of Neural Systems. 2009. Vol. 19, no. 3. P. 173–196. doi: 10.1142/S0129065709001951.
  38. Paz J. T., Huguenard J. R. Microcircuits and their interactions in epilepsy: is the focus out of focus? // Nature Neuroscience. 2015. Vol. 18, no. 3. P. 351–359. doi: 10.1038/nn.3950.
  39. Сысоева М. В., Виноградова Л. В., Перескис М., ван Рейн К. М., Сысоев И. В. Выявление изменений направленных межструктурных связей при лимбических судорогах, вызванных введением антагониста эндоканнабиноидных рецепторов, методом нелинейной причинности по Грейнджеру // Журнал высшей нервной деятельности имени И. П. Павлова. 2019. Т. 69, № 6. С. 752–767. doi: 10.1134/S0044467719060121.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies