Dynamic damping of vibrations of a solid body mounted on viscoelastic supports

Cover Page

Cite item

Full Text

Abstract

The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of attachment of this system. Applying the D’Alembert principle, the equations of small vibrations of a solid with dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the right end — to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is within the frequency of 50.60...50.70 Hz, and a two-mass extinguisher is 10–15% more efficient than a single-mass one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with passive vibration of the object in question. 

About the authors

Ismoil Ibrohimovich Safarov

Tashkent state technical University Named after Islam Karimov

Uzbekistan, Tashkent, st. Navoi, 32

Muhsin Khudoyberdiyevich Teshaev

Institute of Mathematics. V.I.Romanovsky

Uzbekistan, Bukhara, st. M.Ikbol, 11

References

  1. Вибрации в технике: Справочник: В 6 т. Т. 6. Защита от вибраций и ударов / Под ред. К. В. Фролова. М.: Машиностроение, 1981. 456 с.
  2. Токарев М. Ф., Талицкий Е. Н., Фролов В. А. Механические воздействия и защита радиоэлектронной аппаратуры: Учеб. пособие для вузов. М.: Радио и связь, 1984. 224 с.
  3. Нашиф А., Джоунс Д., Хендерсон Дж. Демпфирование колебаний. М.: Мир, 1988. 448 с.
  4. Teshaev M. K., Safarov I. I., Mirsaidov M. Oscillations of multilayer viscoelastic composite toroidal pipes // Journal of the Serbian Society for Computational Mechanics. 2019. Vol. 13, no. 2. P. 104–115. doi: 10.24874/jsscm.2019.13.02.08.
  5. Глудкин О. П. Методы и устройства испытаний РЭС и ЭВС. М.: Высшая школа, 1991. 336 с.
  6. Глудкин О. П., Енгалычев А. Н., Коробов А. И., Трегубов Ю. В. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование. М.: Радио и связь, 1987. 272 с.
  7. Лысенко А. В., Горячев Н. В., Граб И. Д., Кемалов Б. К., Юрков Н. К. Краткий обзор методов имитационного моделирования // Современные информационные технологии. 2011. № 14. С. 171–176.
  8. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств. М.: Техносфера, 2005. 502 с.
  9. ГОСТ 30630.1.2-99. Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на воздействие вибрации. Введ. 01.01.2001. Минск: Межгосударственный Совет по стандартизации, метрологии и сертификации, 1999. 35 с.
  10. Каленкович Н. И. Радиоэлектронная аппаратура и основы ее конструкторского проектирования: Учебно-методическое пособие для студентов спец. «Моделирование и компьютерное проектирование» и «Проектирование и производство РЭС». Минск: БГУИР, 2008. 200 с.
  11. Юрков Н. К. Технология радиоэлектронных средств. Пенза: Изд-во ПГУ, 2012. 640 с.
  12. Кофанов Ю. Н., Шалумов А. С., Журавский В. Г., Гольдин В. В. Математическое моделирование радиоэлектронных средств при механических воздействиях. М.: Радио и связь, 2000. 226 с.
  13. Capatti M. C., Carbonari S., Gara F., Roia D., Dezi F. Experimental study on instrumented micropiles // In: 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS). 13–14 June 2016, Bari, Italy. New York: IEEE, 2016. P. 16125758. doi: 10.1109/EESMS.2016.7504831.
  14. Adamo F., Attivissimo F., Lanzolla A. M. L., Saponaro F., Cervellera V. Assessment of the uncertainty in human exposure to vibration: An experimental study // IEEE Sensors Journal. 2014. Vol. 14, no. 2. P. 474–481. doi: 10.1109/JSEN.2013.2284257.
  15. Palacios-Quinonero F., Karimi H. R., Rubio-Massegu J., Rossell J. M. Passive-damping design for vibration control of large structures // In: 2013 10th IEEE International Conference on Control and Automation (ICCA). 12-14 June 2013, Hangzhou, China. New York: IEEE, 2013. P. 33–38. doi: 10.1109/ICCA.2013.6565018.
  16. Zhang X., Sun D., Song Y., Yan B. Dynamics characteristic study of the visco-elastic suspension system of construction vehicles // In: International Technology and Innovation Conference 2009 (ITIC 2009). 12–14 October 2009, Xi’an, China. Stevenage: IET, 2010. P. 1–4. DOI: 10.1049/ cp.2009.1508.
  17. Sahu S. K., Datta P. K. Dynamic stability of laminated composite curved panels with cutouts // J. Eng. Mech. 2003. Vol. 129, no. 11. P. 1245–1253. doi: 10.1061/(ASCE)0733-9399(2003)129: 11(1245).
  18. Ильюшин А. А., Победря Б. E. Основы математической теории термовязкоупругости. М.: Наука, 1970. 280 с.
  19. Колтунов М. А. Ползучесть и релаксация. М.: Высшая школа, 1976. 278 с.
  20. Cabanska-Placzkiewicz K. Vibrations of a complex system with damping under dynamic loading // Strength of Materials. 2002. Vol. 34, no. 2. P. 165–180. doi: 10.1023/A:1015366527597.
  21. Mirsaidov M. M., Safarov I. I., Teshaev M. K. Dynamics of structurally inhomogeneous lamellar and shell mechanical systems. Part 1 // Journal of Applied Mathematics and Physics. 2019. Vol. 7, no. 10. P. 2283–2302. doi: 10.4236/jamp.2019.710155.
  22. Mirsaidov M., Safarov I. I., Teshaev M. K. Dynamics of structural-inhomogeneous laminate and shell mechanical systems with point constraints and focused masses. Part 2. Statement of the problem of forced oscillations, methods of solution, computational algorithm and numerical results // Journal of Applied Mathematics and Physics. 2019. Vol. 7, no. 11. P. 2671–2684. doi: 10.4236/jamp.2019.711182.
  23. Mirsaidov M., Safarov I., Teshaev M. Dynamic instability of vibrations of thin-wall composite curvorine viscoelastic tubes under the influence of pulse pressure // E3S Web Conf. 2020. Vol. 164. P. 14013. doi: 10.1051/e3sconf/202016414013.
  24. Teshaev M. K., Safarov I. I., Kuldashov N. U., Ishmamatov M. R., Ruziev T. R. On the distribution of free waves on the surface of a viscoelastic cylindrical cavity // Journal of Vibration Engineering & Technologies. 2020. Vol. 8, no. 4. P. 579–585. doi: 10.1007/s42417-019-00160-x.
  25. Коренев Б. Г., Резников Л. М. Динамические гасители колебаний: Теория и технические приложения. М.: Наука, 1988. 304 с.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies