Isomorphism in vanadinite. 2. IR spectroscopic investigation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A collection of 120 vanadinite, pyromorphite and mimetite specimens was studied using IR spectroscopy. The features of IR spectra of phosphorus- and arsenic-bearing varieties of vanadinite are characterized in detail. It is shown that (1) the sensitivity of IR spectroscopy to the incorporation of small amounts of P in vanadinite (≥ 0.1 wt. % P2O5) is comparable to the sensitivity of electron microprobe analysis, and (2) phosphorus-bearing vanadinite can be reliably distinguished from intergrowths (mechanical mixture) of vanadinite and pyromorphite by P–O vibration bands position in the IR spectrum. The cause of shift of the V–O and P–O bands, including the convergence of individual components in them, in IR spectra of phosphorus-bearing vanadinite is discussed. None of the studied vanadinite specimens contain (OH), (CO3)2–, or H2O groups.

Full Text

Restricted Access

About the authors

A. O. Karpov

Moscow State University; Fersman Mineralogical Museum RAS

Author for correspondence.
Email: karpovao@my.msu.ru

Faculty of Geology, Moscow State University

Russian Federation, Moscow; Moscow

A. A. Agakhanov

Fersman Mineralogical Museum RAS

Email: karpovao@my.msu.ru
Russian Federation, Moscow

M. F. Vigasina

Moscow State University

Email: karpovao@my.msu.ru

Faculty of Geology

Russian Federation, Moscow

I. V. Pekov

Moscow State University

Email: karpovao@my.msu.ru

Faculty of Geology

Russian Federation, Moscow

References

  1. Adler H.H. Infrared spectra of phosphate minerals: splitting and frequency shifts associated with substitution of PO43– for AsO43– in mimetite (Pb5(AsO4)3Cl). Amer.Miner. 1968. Vol 53. N 9–10. P. 1740–1744.
  2. Adler H.H. Infrared spectra of phosphate minerals: symmetry and substitutional effects in the pyromorphite series. Amer.Miner. 1964. Vol. 49. N 7–8. P 1002–1015.
  3. Applied infrared spectroscopy. Edited by D.N. Kendall. New York Reinhold publishing corporation. London: Chapman and Hall, 1966. 560 p.
  4. Bajda T., Mozgawa W., Manecki M., Flis J. Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron. 2011. Vol. 30. N 15. P. 2479–2485.
  5. Bartholomäi G., Klee W.E. The vibrational spectra of pyromorphite, vanadinite and mimetite. Spectrochimica Acta Part A: Molecular Spectroscopy. 1978. Vol. 34. N 7–8. P. 831–843.
  6. Bhatnagar V.M. The mineral lead apatites. Bulletin de la Société française de Minéralogie et de Cristallographie. 1968. Vol. 91. N 5. P. 479–486.
  7. Biagioni C., Hålenius U., Pasero M., Karlsson A., Bosi F. Hydroxylhedyphane, Ca2Pb3(AsO4)3(OH), a new member of the apatite supergroup from Långban, Sweden. Eur. J. Miner. 2019. Vol. 31. P. 1015–1024.
  8. Boechat C.B., Eon J.-G., Rossi A.M., de Castro Perezd C.A., da Silva San Gile R.A. Structure of vanadate in calcium phosphate and vanadate apatite solid solutions. Phys. Chem. Chem. Phys. 2000. Vol. 2. P. 4225–4230.
  9. Boldyrev A.I. Infrared spectra of minerals. Moscow: Nauka, 1976. 199 p. (in Russian).
  10. Botto I.L., Barone V.L., Castiglion J.L., Schalamuk I.B. Characterization of a natural substituted pyromorphite. J. Mat. Sci. 1997. Vol. 32. P. 6549–6553.
  11. Brackebusch L., Rammelsberg C., Doering A., Websky M. Sobre los vanadatos naturales de las provincias de Cordoba y de San Luis. Boletin de la Academia Nacional de Ciencias en Córdoba (República Argentina). 1883. Vol. 5. P. 441–524 (in Spanish).
  12. Briscoe P.J., Chapman J., Green D.I., McCallum D., Tindle A.G. The mineralogy of Whitwell quarry, Derbyshire. J. Russell Soc. 2021. Vol. 24. P. 60–120.
  13. Bulanov E.N. Synthesis, structure, physico-chemical study and application of some compounds with the apatite structure. PhD thesis (chemistry). Nizhniy Novgorod: Lobachevsky Nizhniy Novgorod University, 2012. 162 p. (in Russian).
  14. Chernorukov N.G., Knyazev A.V., Bulanov E.N. Study on isomorphism and phase diagram in system Pb5(PO4)3Cl–Pb5(VO4)3Cl. Russian J. Inorganic Chem. 2010. Vol. 55. N 9. P. 1549–1556 (in Russian).
  15. Chernorukov N.G., Knyazev A.V., Bulanov E.N., Dashkina Z.S. Physico-chemical study of vanadinite. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2008. N 3. P. 65–68 (in Russian).
  16. Chukanov N.V. Infrared Spectra of Mineral Species. Extended Library. Volume 1. Dordrecht: Springer Verlag, 2014. 1726 p.
  17. Collie N. On some Leadhills minerals. Journal of the Chemical Society, Transactions. 1889. Vol. 55. P. 91–96.
  18. Cross A.D. An introduction to practical infra-red spectroscopy. London: Butterworths scientific publications, 1960. 80 p.
  19. Dai Y., Hughes J.M. Crystal-structure refinements of vanadinite and pyromorphite. Canad. Miner. 1989. Vol. 27. N 2. P. 189–192.
  20. Eißner W. Die Änderung der Winkel des Apatits, Vanadinits, Pyromorphits und Mimetesits, sowie der optischen Verhältnisse des Apatits im Temperaturbereich von -160° bis +650° und der Dimorphismus der Apatitgruppe. Inaugural Diss. Leipzig: Universität Leipzig, 1913. 54 p. (in German).
  21. Green D.I., Tindle A.G. Lead-bearing apatite-supergroup minerals from Leadhills-Wanlockhead, Southern Scotland. J. Russell Soc. 2022. Vol. 25. P. 80–88.
  22. Galera-Gómez P.A., Sanz-Pinilla S., Otero-Aenlle E., Gonzáles-Díaz P.F. Infrared spectra of arsenate and vanadate strontium apatites. Spectrochimica Acta Part A: Molecular Spectroscopy. 1982. Vol. 38. N 2. P. 253–259.
  23. Guillemin C., Prouvost J., Wintenberger M. Sur les variétés fibreuses de mimétite (prixite) et de vanadinite. Bulletin de la Société française de Minéralogie et de Cristallographie. 1955. Vol. 78. N 4–6. P. 301–306.
  24. Higes-Rolando F.J., Andres-Verges M., González-Díaz P.F. Infrared spectra of heterocationic and heteroanionic apatites. Spectrochimica Acta Part A: Molecular Spectroscopy. 1982. Vol. 38 N 2. P. 197–203.
  25. Janicka U., Bajda T., Topolska J., Manecki M. Spectroscopic study of mimetite—vanadinite solid solution series – preliminary results. Geophys. Res. Abs. 2014. Vol. 16. Paper EGU2014-5193-2.
  26. Kampf A.R., Housley R.M. Fluorphosphohedyphane, Ca2Pb3(PO4)3F, the first apatite supergroup mineral with essential Pb and F. Amer. Miner. 2011. Vol. 96. N 2–3. P. 423–429.
  27. Karbivskyy V.L., Shpak A.P., Kurgan N.A., Vishnyak V.V., Dimitriev O.P., Kasiyanenko V.H. Investigation of vibration anharmonicity in the crystal lattice of the mixed composition apatites. Functional materials. 2011. Vol.18. N 2. P. 195–199.
  28. Karbivskyy V., Kurgan N., Huntush M., Romansky A., Karbivska L., Zaika V. Spectral and quantum mechanical investigation of calcium apatites isomorphically substituted in the anionic sublattice. Journal of Electron Spectroscopy and Related Phenomena. 2023. Vol. 264. Paper 147316.
  29. Karpov A.O., Agakhanov A.A., Pekov I.V. Isomorphism in vanadinite. 1. Chemical variation and solid solutions. Zapiski RMO (Proc. Russian Miner. Soc.). 2024. Vol. 153. P. 127–155 (in Russian).
  30. Kasatkin A.V., Pekov I.V., Škoda R., Chukanov N.V., Nestola F., Agakhanov A.A., Kuznetsov A.M., Koshlyakova N.N., Plášil J., Britvin S.N. Fluorpyromorphite, Pb5(PO4)3F, a new apatite-group mineral from Sukhovyaz Mountain, Southern Urals, and Tolbachik volcano, Kamchatka. J. Geosci. 2023. Vol. 68. P. 81–93.
  31. Knyazev A.V., Bulanov E.N., Lapshin A.N. Synthesis, spectroscopic study and factor group analysis of divalent cation chloride-trisvanadates М5II(VO4)3Cl (MII = Ca, Sr, Ba, Cd, Pb). Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. N 3. P. 87–91 (in Russian).
  32. Kwaśniak-Kominek M., Matusik J., Bajda T., Manecki M., Rakovan J., Marchlewski T., Szala B. Fourier transform infrared spectroscopic study of hydroxylpyromorphite Pb10(PO4)6(OH)2 – hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series. Polyhedron. 2015. Vol. 99. P 103–111.
  33. Levitt S.R., Condrate R.A. The vibrational spectra of lead apatites. Amer. Miner. 1970. Vol. 55. N 9–10. P. 1562–1575.
  34. Liu Y., Dai L., Lai X., Zhu F., Zhang D., Hu Y., Tkachev S., Chen B. Phase transitions in natural vanadinite at high pressures. Minerals. 2021. Vol. 11. N 11. Paper 1217.
  35. Livingstone A. An apatite high in lead from Wanlockhead, Strathclyde Region, Scotland. Miner. Mag. 1994. Vol. 58. N 390. P. 159–163.
  36. Masaoka M., Kyono A. Single crystal growth of lead vanado-chlorapatite Pb5(VO4)3Cl using CsCl flux method. Mat. Lett. 2006. Vol. 60. P. 3922–3926.
  37. Nakamoto A., Urasima Y., Sugiura S., Nakano H., Yachi T. Pyromorphite—mimetite minerals from the Otaru-Matsukura barite mine in Hokkaido, Japan. Miner. J. 1969. Vol. 6. N 1–2. P. 85–101.
  38. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 4th edition. A Wiley-interscience publication. New York: John Wiley and sons publishing, 1986. 484 p.
  39. Olds T.A., Kampf A.R., Rakovan J.F., Burns P.C., Mills O.P., Laughlin-Yurs C. Hydroxylpyromorphite, a mineral important to lead remediation: Modern description and characterization. Amer. Miner.: 2021. Vol. 106. N 6. P. 922–929.
  40. Ondrejka M., Bačík P., Putiš M., Uher P., Mikuš T., Luptáková J., Ferenc Š., Smirnov A. Carbonate-bearing phosphohedyphane – “Hydroxylphosphohedyphane” and cerussite: Supergene products of galena alteration in Permian aplite (Western Carpathians, Slovakia). Canad. Miner. 2020. Vol. 58. N 3. P. 347–365.
  41. Pekov I.V., Chukanov N.V., Yeletskaya O.V., Khomyakov A.P., Men’shikov Yu.P. Belovite-(Ce): new data, refined formula and relationship with other apatite-group minerals. Zapiski VMO (Proc. Russian Miner. Soc.). 1995. Vol. 124. N 2. P. 98–110 (in Russian).
  42. Platonov A.N., Tarashchan A.N., Povarennykh A.S., Zakharova G.M. Optical spectroscopy of vanadium in natural minerals. I. Optical absorption spectra of natural orthovanadates. Konstitutsiya i svoystv mineralov. 1971. Vol. 5. P. 92–100 (in Russian).
  43. Plyusnina I.I. Infrared spectra of minerals. Moscow: Moscow University Publishing, 1976. 199 p. (in Russian).
  44. Povarennykh A.S., Gevork’yan S.V. The peculiarities of the infrared spectra of vanadates. Miner. Misc. Lvov Univ. 1970. Vol. 24. N 3. P. 254–260 (in Russian).
  45. Shannon R.D., Prewitt C.T. Effective ionic radii on oxides and fluorides. Acta Cryst. Section B. 1969. Vol. 25. P. 925–946.
  46. Silayev V.I., Chaykovskiy I.I., Rakin V.I., Philippov V.N. Vanadinite in supergene zone of Saranovskoe chromite deposit. On the problem of mineral-geochemical transformations during hypergenesis. Uralian Geol. J. 2002. Vol. 5. N 29. P. 129–141 (in Russian).
  47. Silayev V.I., Proskurin V.F., Golubeva I.I., Remizov D.N., Philippov V.N., Lyutoyev V.P., Simakova Yu.S. Penolites – a new type of endogenous rocks (Belkovsky Island, Russia). Bull. Perm University. Geology. 2019. Vol. 18. N 2. P. 125–147 (in Russian).
  48. Smith A.L. Applied infrared spectroscopy. Fundamentals, techniques, and analytical problem-solving. A Wiley-interscience publication. New York: John Wiley and sons, 1979. 322 p.
  49. Solecka U., Bajda T., Topolska J., Manecki M. Structural and vibrational behaviour of pyromorphite–vanadinite solid solution series. Geology, geophysics and environment. 2015. Vol. 41. N 1. P. 135–136.
  50. Solecka U., Bajda T., Topolska J., Zelek-Pogudz S., Manecki M. Raman and Fourier transform infrared spectroscopic study of pyromorphite—vanadinite solid solutions. Spectr. Acta Part A: Molecular and Biomolecular Spectroscopy. 2018. Vol. 190. P. 96–103.
  51. Song H., Liu J., Cheng H. Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: Implications for semi-quantitative estimation of As and V contents in apatite. Spectr. Acta Part A: Molecular and Biomolecular Spectroscopy. 2018. Vol. 188. P. 488–494.
  52. Trotter J., Barnes W.H. The structure of vanadinite. Canad. Miner. 1958. Vol. 6. N 2. P. 161–173.
  53. von Rahden H.V.R., Dicks L.W.R. Descloizite, mottramite, and vanadinite from South West Africa: an infrared and X-ray study. Amer. Miner. 1967. Vol. 52. N 7–8. P. 1067–1076.
  54. White T., Ferraris C., Kim J., Madhavi S. Apatite – an adaptive framework structure. Rev. Miner. Geochem. 2005. Vol. 57. P. 307–401.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Infrared spectra of vanadinite (а), mimetite (б) and pyromorphite (в), chemically close to end-members. а – vanadinite from Kappel, Carinthia, Austria (FMM RAS specimen №52365); б – mimetite from Kappel, Carinthia, Austria (FMM RAS specimen № 54919); в – pyromorphite from Yangshuo mine, Guangxi, China (FMM RAS specimen № ОП2847); Here and further: sh – shoulder, w – weak band, м – nujol band.

Download (16KB)
3. Fig. 2. Infrared spectra of vanadinite with different phosphorous content. а – vanadinite from Mibladen, Drâa-Tafilalet region, Morocco. According to EMPA data, it contains on average 0.05 apfu P (specimen Mib-01 from one of the authors collections, A.O.K.); б – vanadinite from Silver district, Arizona, USA. According to EMPA data, it contains on average 0.2 apfu P (FMM RAS specimen № 52373); в – vanadinite from Suleiman-Sai deposit, Karatau ridge, Kazakhstan. According to EMPA data, it contains on average 0.45 apfu P and 0.45 apfu As (FMM RAS specimen № М9512).

Download (17KB)
4. Fig. 3. Infrared spectra of P-rich vanadinite (а), vanadinite-pyromorphite intergrowths (б) and artificially made mechanical mixture of vanadinite and pyromorphite (в). а – vanadinite from Berezovskoe deposit, Middle Urals, Russia. According to EMPA data, it contains on average 1 apfu P (FMM RAS specimen № 52362); б – white fine-crystalline crust formed by intergrowths of As-rich vanadinite and almost admixture-free pyromorphite from M`Fouati, Bouenza department, Republic of the Congo. According to EMPA data, vanadinite contains on average 1.5 apfu P (that is so-called endlichite – an intermediate member of vanadinite– mimetite series) and less than 0.03 apfu P. Note, band at 805 cm–1 is noticeably more intense than band at 740 cm–1; also appears band at 787 cm–1 (FMM RAS specimen № 60986); в – artificially made mechanical mixture of comparable quantities of vanadinite from Mibladen (Morocco) and pyromorphite from Yangshuo mine (China).

Download (19KB)
5. Fig. 4. Infrared spectra of vanadinite with different arsenic content. а – vanadinite from Abenab mine, Grootfontein, Namibia. According to EMPA data, it contains on average 0.25 apfu As and less than 0.05 apfu P (0.1 weight % P2O5) (FMM RAS specimen № 52375); б – vanadinite from Pure Potential mine, Arizona, USA. According to EMPA data, it contains on average 1.25 apfu As. Note, band at 806 cm–1 is noticeably more intense than band at 740 cm–1 (FMM RAS specimen № 93660); в – vanadinite from Touissit, Oriental region, Morocco. According to EMPA data, it contains on average 0.65 apfu As and 0.25 apfu P (FMM RAS working materials specimen R-01).

Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».