Composition of Cs-rich analcime in spodumene pegmatites of Afghanistan (Kolatan Deposit, Nuristan province)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In spodumene pegmatites, the Kolatan deposit, Nuristan province, Afghanistan, a large (about 15 mm) crystal of Cs-rich analcime was discovered for the first time in the region. The SEM-EDS and SIMS methods identified its concentric zoning. The formula (Na0.78Cs0.05K0.02)Σ0.85[(Al0.89Si2.12)Σ3.01O6]·0.65H2O corresponds to the average composition of the mineral. The analysis of crystal zoning in two profiles by the SEM-EDS method (93 points) shows that Cs content is maximum in the core of the crystal and decrease to the rim. Contents of K, Na, and Al increase from core to rim. SIMS method (16 points) confirms the pointed profile of Cs which content decreases from 65 100 to 9200 ppm. The profile of Ca has smoother appearance. Profiles of transition metals (Mn, Fe, Ni, Cr, and V) are complex. The Rb profile is peaked and asymmetric: in the one part of the profile, Rb content varies insignificantly, in the another part it decreases from 250 ppm to 80 ppm. Water content increases from core to rim (from 48 400 ppm to 68 700 ppm). Most likely, this increasing reflects the transition to the hydrothermal stage. It is possible to assume that the formation of Cs-rich analcime marked the completion of the magmatic stage of pegmatite formation, the temperature regime of which is estimated as ~400°C. The find of such a large and gem quality crystal of extremely rare Cs-rich analcime is unique.

Full Text

Restricted Access

About the authors

S. G. Skublov

Institute of Precambrian Geology and Geochronology RAS

Author for correspondence.
Email: skublov@yandex.ru
Russian Federation, Saint-Petersburg

A. Yosufzaib

Saint-Petersburg Mining University; Kabul Polytechnic University,

Email: ata.yosufzai@gmail.com
Russian Federation, Saint-Petersburg; Kabul, Afghanistan

A. N. Evdokimov

Saint-Petersburg Mining University

Email: evdokimov_an@pers.spmi.ru
Russian Federation, Saint-Petersburg

O. L. Galankina

Institute of Precambrian Geology and Geochronology RAS

Email: galankinaol@mail.ru
Russian Federation, Saint-Petersburg

References

  1. Alekseev V.I. Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites. J. Mining Inst. 2023. Vol. 262. P. 495–508.
  2. Arbel-Haddad M., Ofer-Rozovsky E., Goldbourt A. Facile formation of pollucite in geopolymers: Implications for radioactive Cs immobilization. Ceramics Int. 2023. Vol. 49. P. 30881–30885.
  3. Barrer R.M. Cation exchange equilibria in zeolites and feldspathoids. In: Natural Zeolites. Occurrence. Properties. Use. Eds. L.B. Sand and F.A. Mumpton. Pergamon Press, 1978. P. 385–395.
  4. Bebout G.E. Caesium. Encyclopedia of Geochemistry. Ed. W.M. White. Springer International Publishing Switzerland, 2018. P. 172–177.
  5. Beger R.M. The crystal structure and chemical composition of pollucite. Zeitschrift für Kristallographie-Crystalline Materials. 1969. Vol. 129. P. 280–302.
  6. Beskin S.M., Marin Y.B. Granite systems with rare-metal pegmatites. Zapiski RMO (Proc. Russian Miner Soc.). 2019. Vol. 148. P. 1–16 (in Russian, English translation: Geol. Ore Deposits. 2020. Vol. 62. P. 554–563).
  7. Černý P. The present status of the analcime-pollucite series. Canad. Miner. 1974. Vol. 12. P. 334–341.
  8. Černý P. The Tanco pegmatite at Bernic Lake, Manitoba; VIII, Secondary minerals from the spodumene-rich zones. Canad. Miner. 1972. Vol. 11. P. 714–726.
  9. Černý P., Simpson F.M. The Tanco pegmatite at Bernic Lake, Manitoba X. Pollucite. Canad. Miner. 1978. Vol. 16. P. 325–333.
  10. Černý P. Rare element granitic pegmatites. Part II: Regional and global environments and petrogenesis. Geosci. Canad. 1991. Vol. 18. P. 68–81.
  11. Chen J.F., Wen C.H., Lv Z.H., Huang J.Z., Zhang J.X., Tang Y., Du Y., Cao C.H. Petrogenesis of Mesozoic Li-, Cs-, and Ta-rich (LCT) pegmatites from the Neoproterozoic Jiangnan Orogenic Belt, South China: An alternative origin model for the LCT type pegmatite. Ore Geol. Rev. 2023. Vol. 153. 105276.
  12. Coombs D.S., Alberti A., Armbruster T., Artioli G., Colella C., Galli E., Grice J.D., Liebau F., Mandarino J.A., Minato H., Nickel E.H. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Miner. Mag. 1998. Vol. 62. P. 533–571.
  13. Doebrich J.L., Wahl R.R., Chirico P.G., Wandrey C.J., Bohannon R.G., Orris G.J., Bliss J.D., Wasy A., Younusi M.O. Geologic and mineral resource map of Afghanistan, scale 1/850,000. United States Geological Survey, Open File Report. 2006. 1038.
  14. Drysdale D.J. The pollucite—analcime series, 1974-1990. Papers Dep. Earth Sci. Univ. Queensland. 1992. Vol. 12. P. 317–324.
  15. Durnev V.F., Melentev G.B., Sokolov V.A., Pokrovskii E.N., Cherepivskaya G.A. First finding of pollucite in Pamirs pegmatites. Doklady Acad. Sci. USSR. Earth Sci. Section. 1973. Vol. 213. N 1. P. 180–183 (in Russian).
  16. Ercit T.S., Linnen R.L., Samson I.M. REE-enriched granitic pegmatites. Rare-element geochemistry and mineral deposits. Geol. Assoc. Canada, GAC Short Course Notes. 2005. Vol. 17. P. 175–199.
  17. Frank-Kamenetskaya О.V., Gordienko V.V., Kaminskaya Т.N., Zorina М.L., Kostitsyna А.V. Water in crystal structure of minerals of the analcime-pollucite isomorphous series NaAlSi2O6·H2O–CsAlSi2O6. Zapiski RMO (Proc. Russian Miner. Soc.). 1997. Vol. 126. N 2. P. 62–71 (in Russian).
  18. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Bannova I.I., Kostitsyna A.V., Kaminskaya T.N., Gordienko V.V. Dissymmetrization of crystal structures of sodium pollucites. Crystallogr. Rep. 1995. Vol. 40. P. 645–654.
  19. Gatta G.D., Rinaldi R., McIntyre G.J., Nénert G., Bellatreccia F., Guastoni A., Ventura G.D. On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96· n H2O: A natural microporous material of interest in nuclear technology. Amer. Miner. 2009. Vol. 94. P. 1560–1568.
  20. Hollister L.S. Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science. 1966. Vol. 154(3757). P. 1647–1651.
  21. Hollister L.S. Origin, mechanism, and consequences of compositional sector-zoning in staurolite. Amer. Miner. 1970. Vol. 55. P. 742–766.
  22. Hu F., Liu X., He S., Wang J., Wu F. Cesium-rubidium mineralization in Himalayan leucogranites. Sci. China Earth Sci. 2023. Vol. 66. P. 2827–2852.
  23. Jiang S.Y., Wang W., Su H.M. Super-enrichment mechanisms of strategic critical metal deposits: current understanding and future perspectives. J. Earth Sci. 2023. Vol. 34. P. 1295–1298.
  24. Keith T.E., Thompson J.M., Mays R.E. Selective concentration of cesium in analcime during hydrothermal alteration, Yellowstone National Park, Wyoming. Geochim. Cosmochim. Acta. 1983. Vol. 47. P. 795–804.
  25. Kol’tsova T.N. Analysis of the homogeneity ranges of pollucite-based (analcime-pollucite) solid solutions. Inorganic Materials. 2014. Vol. 50. N 7. P. 691–702.
  26. Krivovichev V.G., Gulbin Yu.L. Recommendations for mineral formula calculations from chemical analytical data. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Vol. 151. N 1. P.114–124 (in Russian).
  27. Levashova E.V., Popov V.A., Levashov D.S., Rumyantseva N.A. Distribution of trace elements controlled by sector and growth zonings in zircon from a miaskite pegmatite of the Vishnegorsky massif, the Southern Urals. J. Mining. Inst. 2022. Vol. 254. P. 136–148.
  28. Levashova E.V., Skublov S.G., Hamdard N., Ivanov M.A., Stativko V.S. Geochemistry of zircon from pegmatite-bearing leucogranites of the Laghman Complex, Nuristan Province, Afghanistan. Russian J. Earth Sci. 2024. Vol. 24. ES2011 (in Russian).
  29. Li H., Liu Y., Yang K., Liu Y., Niu Y. Hydrothermal mineral assemblages of calcite and dolomite–analcime–pyrite in Permian lacustrine Lucaogou mudstones, eastern Junggar Basin, Northwest China. Miner. Petrol. 2021. Vol. 115. P. 63–85.
  30. London D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018. Vol. 101. P. 349–383.
  31. London D. Reading pegmatites: Part 5 – What pollucite says. Rocks & Minerals, 2019. Vol. 94. P. 420–427.
  32. London D., Morgan VI G.B., Icenhower J.P. Stability and solubility of pollucite in granitic systems at 200 MPa H2O. Canad. Miner. 1998. Vol. 36. P. 497–510.
  33. Lyckberg P. Gem pegmatites of northeastern Afghanistan. Miner. Rec. 2017. Vol. 48. P. 611–675.
  34. Mashkoor R., Ahmadi H., Rahmani A.B., Pekkan E. Detecting Li-bearing pegmatites using geospatial technology: the case of SW Konar Province, Eastern Afghanistan. Geocarto Intern. 2022. Vol. 37. P. 14105–14126.
  35. Mosazai A.M., Yousufi A., Ahmadi H. The geological characteristics and economical importance of pegmatite belt of Afghanistan. Geol. Protection Miner. Res. 2017. Vol. 65. N 4. P. 26–33.
  36. Orris G.J., Bliss J.D. Mines and Mineral Occurrences of Afghanistan. Vol. 2. U.S. Geological Survey Open-File Report 02-110. USGS, Tucson, Arizona, 2002. 95 p.
  37. Pautov L.A., Agakhanov A.A., Bekenova G.K. Sokolovaite CsLi2AlSi4O10F2 – a new mineral species of the mica group. New Data on Minerals. 2006. Vol. 41. P. 5–13 (in Russian).
  38. Pekov I.V., Kononkova N.N. Rubidium mineralization in rare-element granitic pegmatites of the Voron’i tundras, Kola Peninsula, Russia. Geochem. Int. 2010. Vol. 48. P. 695–713.
  39. Peters S.G., Ludington S.D., Orris G.J., Sutphin D.M., Bliss J.D. (eds.). Preliminary Non-Fuel Mineral Resource Assessment of Afghanistan. U.S. Geological Survey Open–File Report 2007–1214. 2007. 810 p.
  40. Popov M.P. Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt). J. Mining Inst. 2022. Vol. 255. P. 337–348.
  41. Rossovskii L.N. First find of pollucite and its crystals in Afghanistan. Doklady Acad. Sci. USSR, Earth Sci. Section. 1977. Vol. 236. P. 157–160 (in Russian).
  42. Rossovskiy L.N., Chmyrev V.M. Distribution patterns of rare-metal pegmatites in the Hindu Kush (Afghanistan). Intern. Geol. Rev. 1977. Vol. 19. P. 511–520.
  43. Rossovskiy L.N., Konovalenko S.I. Features of the formation of the rare-metal pegmatites under conditions of compression and tension (as exemplified by the Hindu Kush region). Intern. Geol. Rev. 1979. Vol. 21. N 7. P. 755–764.
  44. Rudnick R.L., Gao S. 4.1. Composition of the continental crust. In: Treatise on Geochemistry: The Crust (ed. R.L. Rudnick). 2nd edn. Amsterdam: Elsevier, 2014. Vol. 4. P. 1–51.
  45. Sánchez-Muñoz L., Santos J.I., Simmons W.B., Florian P. Local structure and protons in non-stoichiometric pseudo-cubic pollucite mineral by multinuclear NMR. Minerals. 2022. Vol. 12. 1181.
  46. Shearer C.K., Papike J.J., Jolliff B.L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota. Canad. Miner. 1992. Vol. 30. P. 785–809.
  47. Scandale E., Lucchesi S. Growth and sector zoning in a beryl crystal. Eur. J. Miner. 2000. Vol. 12. P. 357–366.
  48. Skublov S.G., Hamdard N., Ivanov M.A., Stativko V.S. Trace element zoning of colorless beryl from spodumene pegmatites of Pashki deposit (Nuristan province, Afghanistan). Front. Earth Sci. 2024. Vol. 12. 1432222.
  49. Skublov S.G., Petrov D.A., Galankina O.L., Levashova E.V., Rogova I.V. Th-Rich zircon from a pegmatite vein hosted in the Wiborg rapakivi granite massif. Geosciences. 2023. Vol. 13. 362.
  50. Skublov S.G., Gavrilchik A.K., Berezin A.V. Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). J. Mining Inst. 2022. Vol. 255. P. 455–469.
  51. Skublov S.G., Levashova E.V., Mamykina M.E., Gusev N.I., Gusev A.I. Polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon. J. Mining Inst. 2024.
  52. Teertstra D.K., Černý P. The compositional evolution of pollucite from African granitic pegmatites. J. African Earth Sci. 1997. Vol. 25. P. 317–331.
  53. Teertstra D.K., Černý P. Controls on morphology of analcime‐pollucite in natural minerals, synthetic phases, and nuclear waste products. Crystal Res. Techn. 1992. Vol. 27. P. 931–939.
  54. Teertstra D.K., Černý P., Chapman R. Compositional heterogeneity of pollucite from high grade dyke, Maskwa Lake, Southeastern Manitoba. Canad. Miner. 1992. Vol. 30. P. 687–697.
  55. Vance E.R., Gregg D.J., Griffiths G.J., Gaugliardo P.R., Grant C. Incorporation of Ba in Al and Fe pollucite. J. Nuclear Mater. 2016. Vol. 478. P. 256–260.
  56. Wang R.C., Hu H., Zhang A.C., Fontan F., de Parseval P., Jiang S.Y. Cs-dominant polylithionite in the Koktokay# 3 pegmatite, Altai, NW China: in situ micro-characterization and implication for the storage of radioactive cesium. Contrib. Miner. Petrol. 2007. Vol. 153. P. 355–367.
  57. Wang R.C., Hu H., Zhang A.C., Huang X.L., Ni P. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. Canad. Miner. 2004. Vol. 42. P. 883–896.
  58. Zhitova E.S., Popov M.P., Zolotarev (Jr.) A.A. Analcime of Mariinskoe Deposit (Urals Emerald mines, The Middle Urals): Chemical composition, crystal structure. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146. N 4. P. 111–120 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Satellite image (a) and geological scheme of the Kolatan deposit (б) (compiled by A. Yosufzai based on (Rossovsky, Chmyrev, 1977; Doebrich et al., 2006; Mosazai et al., 2017) 1 – alluvium–proluvium, pebbles, gravel, sands and clays; 2 – marbled limestones, interlayers of carbonaceous and biotite schists; 3 – thin–layered quartz–biotite–garnet and quartz–biotite–garnet–staurolite schists; 4 – medium–fine–grained biotite–muscovite granites of the third phase of the Laghman complex; 5–7 – pegmatites: 5 – schorl–muscovite–microcline pegmatites (barren), 6 – weakly albitized and microcline–albite pegmatites with elbaite, polychrome tourmaline, kunzite, manganotantalite, cassiterite, pollucite and analcime, 7 – spodumene–microcline–albite and lepidolite–spodumene–cleavelandite pegmatites with amblygonite, elbaite, polychrome tourmaline, pollucite, coltan, cassiterite and analcime; 8 – faults (a) and rock contacts (б); 9 – sampling site; 10 – position of the Kolatan deposit on the inset with the border of Afghanistan. The rectangle shows the position of the pegmatite vein (Fig. 2).

Download (54KB)
3. Fig. 2. General plan of the lepidolite-spodumene-cleavelandite pegmatite vein in the host phyllite shales at the Kolatan deposit (a), detailed structure of the pegmatite vein (photo by A. Yosufzai) (б), a crystal of cesium-containing analcime with indexes of the tetragontrioctahedron faces and indication of the cross-section for the mount preparation (в), a mount with a crystal of cesium-containing analcime (г), BSE-image with analytical points, the dotted lines show the supposed boundaries of the growth zoning (д). Ab – albite, Anl – analcime, Clv – cleavelandite, Elb – elbaite, Lpd – lepidolite, Mc – microcline, Qz – quartz; Spd – spodumene; Ta-Nb – coltan, Tur – watermelon tourmaline.

Download (71KB)
4. Fig. 3. BSE-image of a dark area in cesium-containing analcime (a) and the inclusion of kaolinite with small crystals of microcline (б). The symbols of the minerals correspond to Fig. 2 (Kln – kaolinite).

Download (21KB)
5. Fig. 4. Сoefficients in the formula for cesium-containing analcime (apfu). Green circles mark the points corresponding to isolated areas with dark coloring in the BSE image.

Download (17KB)
6. Fig. 5. Distribution patterns of major and minor elements (apfu) in a crystal of cesium-containing analcime (SEM-EDS data). The numbers of the analytical points correspond to Fig. 2, д. Green circles and dotted lines mark the points corresponding to isolated areas with dark coloring in the BSE image.

Download (107KB)
7. Fig. 6. Distribution patterns of minor and trace elements (ppm) in a crystal of cesium-containing analcime (SIMS data). The numbers of the analytical points correspond to Fig. 2, д.

Download (75KB)
8. Fig. 7. The pattern for the K/Rb ratio from point 44 to point 94 (a) and Rb content (ppm) vs K/Rb ratio (б). Кed circles mark the points located in the marginal part of the crystal of cesium-containing analcime.

Download (17KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».