Isomorphism in vanadinite. 1. Chemical variation and solid solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The chemical composition of hundred vanadinite specimens from 17 occurrences worldwide was studied by electron microprobe and the new and literature data on its chemical composition were summarized. Vanadinite is a supergene mineral: no reliable data indicating that vanadinite may be hypogene have been found, although its analogue is synthesized in a wide temperature range: from 25 to 1000 °C. The overwhelming majority of vanadinite specimens have a composition close to the ideal formula, Pb5(VO4)3Cl. Phosphorus and/or arsenic-rich vanadinite (> 0.5 apfu P and/or As) is rare, as well as a Cr-bearing variety of this mineral. According to the data available today, isomorphism between V, As and P in natural vanadinite–pyromorphite–mimetite system is incomplete unlike synthetic system Pb5(T5+O4)3Cl (T = V, P, As) in which full miscibility occurs, even at low temperatures. For the vanadinite–mimetite series, the compositional range from V3.00As0.00 to As2.15V0.85 has been recorded while the vanadinite–pyromorphite series is so far represented almost only by the vanadinite part: from V3.00P0.00 to P1.50V1.50. Two new finds of the so-called endlichite (an intermediate member of the vanadinite–mimetite series with a V: As ratio of ~1:1, data on which were previously based only on wet chemical analyses published in 1885) were made. The calcium content in all vanadinite samples studied in this work does not exceed 0.2 apfu, and the contents of other elements with atomic numbers >8, excepting Pb, Ca, V, P, As and Cl, are below their detection limits by electron microprobe.

全文:

受限制的访问

作者简介

A. Karpov

Moscow State University; Fersman Mineralogical Museum RAS

编辑信件的主要联系方式.
Email: karpovao@my.msu.ru

Faculty of Geology, Moscow State University

俄罗斯联邦, Moscow; Moscow

A. Agakhanov

Fersman Mineralogical Museum RAS

Email: karpovao@my.msu.ru
俄罗斯联邦, Moscow

I. Pekov

Moscow State University

Email: karpovao@my.msu.ru

Faculty of Geology

俄罗斯联邦, Moscow

参考

  1. Amadori M. Ricerche sul gruppo della piromorfite. La Gazzetta Chimica Italiana. 1919. Vol. 49(1). N 1—2. P. 38—102.
  2. Anosov F. Ya., Chukhrov F. V. About vanadates from ore deposits supergene zone in Central Kazakhstan. Zapiski VMO (Proc. Russian Miner. Soc.). 1948. Vol. 77. N 1. P. 43—54 (in Russian).
  3. Antao S. M., Dhaliwal I. Lead apatites: structural variations among Pb 5 (BO 4 ) 3 Cl with B = P (pyromorphite), As (mimetite) and V (vanadinite). J. Synchrotron Radiation. 2018. Vol. 25. P. 214—221.
  4. Baker W. E. An X-ray diffraction study of synthetic members of the pyromorphite series. 1966. Amer. Miner. Vol. 51. N 11—12. P. 1712—1721.
  5. Balassone G., Petti C., Mondillo N., Panikorovskii T. L., de Gennaro R., Cappelletti P., Altomare A., Corriero N., Cangiano M., D’Orazio L. Copper minerals at Vesuvius volcano (Southern Italy): a mineralogical review. Minerals. 2019. Vol. 9. N 12. Paper 730.
  6. Barthoux M. J. Description de quelques minéraux marocains. Bulletin de la Société française de Minéralogie. 1924. Vol. 47. N 3—4. P. 36—45.
  7. Baghurst D. R., Barrett J., Coleyshaw E. E., Griffith W. P., Mingos D. M. P. Microwave techniques for the synthesis and deuteration of minerals, with particular reference to scorodite, FeAsO4·2H2O. Miner. Mag. 1996. Vol. 60. N 402. P. 821—828.
  8. Berzelius J. Ueber das Vanadin und seine Eigenschaften. Annalen der Physic und Chemie. 1831. Vol. 22. N 1. P. 1—67.
  9. Brackebusch L., Rammelsberg C., Doering A., Websky M. Sobre los vanadatos naturales de las provincias de Cordoba y de San Luis. Boletin de la Academia Nacional de Ciencias en Córdoba (República Argentina). 1883. Vol. 5. P. 441—524.
  10. Briscoe P. J., Chapman J., Green D. I., McCallum D., Tindle A. G. The mineralogy of Whitwell quarry, Derbyshire. J. Russell Soc. 2021. Vol. 24. P. 60—120.
  11. Bukanov V. V. Rock Crystal from Subpolar Urals, Leningrad: Nauka, 1974. 212 p. (in Russian).
  12. Bukanov V. V., Burlakov E. V., Kozlov A. V., Pozhidaev N. A. Subpolar Urals: Minerals of the rock crystal veins. Miner. Alm. 2012. Vol. 17. N 2. 136 p.
  13. Bukanov V. V., Yushkin N. P. Physical and chemical destruction of scheelite crystals. In: Mineralogy and Geochemistry of Tungsten Deposits. Leningrad: Leningrad University Publ., 1971. P. 181—190 (in Russian).
  14. Bulanov E. N. Synthesis, Structure, Physico-Chemical Study and Application of Some Compounds with the Apatite Structure. PhD thesis (chemistry). Nizhniy Novgorod: Lobachevsky Nizhniy Novgorod University, 2012. 162 p. (in Russian).
  15. Caswell L. R. Andrés del Río, Alexander von Humboldt, and the twice-discovered element. Bulletin for the History of Chemistry. 2003. Vol. 28. N 1. P. 35—41.
  16. Chernorukov N. G., Knyazev A. V., Bulanov E. N. Study on isomorphism and phase diagram in system Pb 5 (PO 4 ) 3 Cl Pb 5 (VO 4 ) 3 Cl. Russian J. Inorganic Chem. 2010. Vol. 55. N 9. P. 1549—1556 (in Russian).
  17. Chernorukov N. G., Knyazev A. V., Bulanov E. N., Dashkina Z. S. Physico-chemical study of vanadinite. Proc. Nizhny Novgorod Lobachevsky University. 2008. N 3. P. 65—68 (in Russian).
  18. Chirva E. F. Vanadinite. Mineralogy of USSR, series A, vol. 7. Moscow — Leningrad: USSR Acad. Sci. Publ., 1936. 36 p. (in Russian).
  19. Chukhrov F. V. Oxidation Zone of Sulfide Deposits in the Steppe Part of Kazakhstan (Features and Patterns of Mineral Paragenesis). Moscow: USSR Acad. Sci. Publ., 1950. 244 p. (in Russian).
  20. Dai Y., Hughes J. M. Crystal-structure refinements of vanadinite and pyromorphite. Canad. Miner. 1989. Vol. 27. N 2. P. 189—192.
  21. Dhaliwal I. Structure and сhemistry of pyromorphite, Pb 5 (PO 4 ) 3 Cl, mimetite, Pb 5 (AsO 4 ) 3 Cl, vanadinite, Pb 5 (VO 4 ) 3 Cl, and erythrite, Co 3 (AsO 4 ) 2 8H 2 O. Master thesis, Calgary: University of Calgary, 2018. 106 p.
  22. Del Río A. M. Tablas mineralógicas dispuestas según los brimientos más recientes é ilustradas con notas por D. L. G. Karsten. Mexico: Don M. J. Zúñiga y Ontiveros Publishing, 1804. 102 p.
  23. Dong Z., White T. J., Wei B., Laursen K. Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate. J. Amer. Ceram. Soc. 2002. Vol. 85. N 10. P. 2515—2522.
  24. Dong Z.-L., White T. J. Calcium–lead fluoro-vanadinite apatites. I. Disequilibrium structures. Acta Cryst. Section B. 2004a. Vol. 60. N 2. P. 138—145.
  25. Dong Z.-L., White T. J. Calcium–lead fluoro-vanadinite apatites. II. Equilibrium structures. Acta Cryst. Section B. 2004b. Vol. 60. N 2. P. 146—164.
  26. Durand G. Sur la synthèse de la vanadinite. Comptes rendus hebdomadaires des séances de l’Académie des sciences. 1957. Vol. 244. N 2. P. 2621—2622.
  27. Eißner W. Die Änderung der Winkel des Apatits, Vanadinits, Pyromorphits und Mimetesits, sowie der optischen Verhältnisse des Apatits im Temperaturbereich von –160° bis +650° und der Dimorphismus der Apatitgruppe. Inaugural Dissertation. Leipzig: Universitat Leipzig, 1913. 54 p.
  28. Fan D., Ma M., Wei S., Chen Z., Xie H. In-situ synchrotron powder X-ray diffraction study of vanadinite at room temperature and high pressure. High Temperatures — High Pressures. 2013. Vol. 42. N 5. P. 441—449.
  29. Franke W. A., Suchardjevskiy S. M. Crystal growth of vanadinite in hot brines. Zapiski VMO (Proc. Russian Miner. Soc.). 1994. Vol. 123. N 6. P. 80—81.
  30. Frenzel A. XIX. Mineralogisches. Mineralogische und petrographische Mitteilungen (herausgeben von G. Tschermak). 1881. Vol. 3. N 6. P 504—516.
  31. Friedl I., Ženiš P. Vanadinit z permských bazaltov z Malužinej. Mineralia Slovaca. 1991. Vol. 23. N 4. P. 361—364.
  32. Frost R. L., Crane M., Williams P. A., Kloprogge J. T. Isomorphic substitution in vanadinite [ Pb 5 (VO 4 ) 3 Cl] — a Raman spectroscopic study. J. Raman Spectr. 2003. Vol. 34. N 3. P. 214—220.
  33. Garnit H., Bouhlel S., Kraemer D., Ben Halima K., Beaudoin G. Characterization and genesis of supergene karstic vanadium ores in the Djebba Pb–Zn district (Triassic Diapirs zone, North Eastern Tunisia). J. African Earth Sci. 2022. Vol. 46. Paper 104688.
  34. Genth F. A. Contributions from the Chemical Laboratory of the University of Pennsylvania. No. XXIX. Contributions to Mineralogy. Proc. Amer. Philosophical Soc. 1887. Vol. 24. N 125. P. 23—44.
  35. Genth F. A., vom Rath G. Contributions from the Laboratory of the University of Pennsylvania. No. XXIII. On the Vanadates and Iodyrite, from Lake Valley, Sierra Co., New Mexico. Proc. Amer. Philosophical Soc.. 1885a. Vol. 22. N 120. P. 363—375.
  36. Genth F. A., vom Rath G. Ueber Vanadate und Jodsilber von Lake Valley, Donna Anna County, New Mexico. Z. Krist. — Cryst. Mater. 1885b. Vol. 10. N 1—6. P. 458—474.
  37. Goldschmidt V. Ueber Vanadinit (Endlichit) von Hillsboro’, New Mexico. Z. Krist. — Cryst. Mater 1900. Vol. 32. N 1—6. P. 561—578.
  38. Green D. I., Rumsey M. S., Bridges T. F., Thomson N. A review of the mineralisation at Ingray Gill, Caldbeck Fells, Cumbria. J. Russell Soc. 2009. Vol. 12. P. 33—45.
  39. Green D. I., Tindle A. G. Lead-bearing apatite-supergroup minerals from Leadhills-Wanlockhead, Southern Scotland. J. Russell Soc. 2022. Vol. 25. P. 80—88.
  40. Green D. I., Tindle A. G., Bridges T. F., Neall T. A review of the mineralisation at Arm O’Grain, Caldbeck Fells, Cumbria. J. Russell Soc. 2006. Vol. 9. P. 44—53.
  41. Guillemin C., Prouvost J., Wintenberger M. Sur les variétés fibreuses de mimétite (prixite) et de vanadinite. Bulletin de la Société française de Minéralogie et de Cristallographie. 1955. Vol. 78. N 4—6. P. 301—306.
  42. Hairapetian V., Pelckmans H., Welting T., Sarami A., Hosseini P. New finds of mimetite and vanadinite from Central Iran. Rocks & Minerals. 2016. Vol. 91. N 5. P. 402—413.
  43. Hautefeuille P. Sur les chlorovanadates. Comptes rendus de l’Académie des Sciences. 1873. Vol. 77. P. 896—897.
  44. Hendricks S., Jefferson M., Mosley V. The crystal structures of some natural and synthetic apatite-like substances. Z. Krist. — Cryst. Mater. 1932. Vol. 81. N 1. P. 352—369.
  45. Ivanov V. V. Ecological geochemistry of chemical elements: handbook. In 6 books. Book 3: rare p-elements. Moscow: Nedra, 1996. 352 p. (in Russian).
  46. Janicka U., Bajda T., Topolska J., Manecki M. Spectroscopic study of mimetite-vanadinite solid solution series — preliminary results. Geoph. Research Abs. 2014. Vol. 16. Paper EGU2014-5193-2.
  47. Kampf A. R., Steele I. M., Jenkins R. A. Phosphohedyphane, Ca 2 Pb 3 (PO 4 ) 3 Cl, the phosphate analog of hedyphane: Description and crystal structure. Amer. Miner. 2006. Vol. 91. N 11—12. P. 1909—1917.
  48. Kasatkin A. V., Pekov I. V., Škoda R., Chukanov N. V., Nestola F., Agakhanov A. A., Kuznetsov A. M., Koshlyakova N. N., Plášil J., Britvin S. N. Fluorpyromorphite, Pb 5 (PO 4 ) 3 F, a new apatite-group mineral from Sukhovyaz Mountain, Southern Urals, and Tolbachik volcano, Kamchatka. J. Geosci. 2023. Vol. 68. P. 81—93.
  49. Khanin D. A Chromate Mineralization in the Supergene Zone of Ural Deposits. PhD thesis (mineralogy). Moscow: Lomonosov Moscow State University, 2017. Vol. 1. 223 p. (in Russian).
  50. Klasa J., Flis J., Manecki M., Kaltenberg E. Synthesis of mimetite — vanadinite, and pyromorphite — vanadinite solid solution series. Mineralogia — Special Papers. 2008. Vol. 32. P. 90.
  51. Knyazev A. V., Bulanov E. N., Lapshin A. N. Synthesis, spectroscopic study and factor group analysis of divalent cation chloride-trisvanadates М 5 (VO 4 ) II 3 Cl ( M II = Ca, Sr, Ba, Cd, Pb). Vestnik Nizhegorodskogo Universiteta im. N. I. Lobachevskogo. 2012. N 3. P. 87—91 (in Russian).
  52. Knyazev A. V., Bulanov E. N., Smirnova N. N., Kuznetsova N. Yu., Letyanina I. A., Pryamova E. D. Thermodynamic properties of pentalead tris(vanadate) chloride. Thermochimica Acta. 2011. Vol. 515. N 1—2. P. 79—83.
  53. Kwaśniak-Komenek M., Manecki M. Mechanisms of replacement reactions of single cerussite PbCO 3 crystals by pyromorphite, mimetite and vanadinite. Goldschmidt2013 Conf. Abs. Miner.Mag. 2013. Vol. 77. N 5. P. 1532.
  54. Kwaśniak-Kominek M., Matusik J., Bajda T., Manecki M., Rakovan J., Marchlewski T., Szala B. Fourier transform infrared spectroscopic study of hydroxylpyromorphite Pb 10 (PO 4 ) 6 (OH) 2 — hydroxylmimetite Pb 10 (AsO 4 ) 6 (OH) 2 solid solution series. Polyhedron. 2015. Vol. 99. P 103—111.
  55. Lacroix A. Sur quelques vanadates des environs de Saïda (Oran). Bulletin de la Société française de Minéralogie. 1908. Vol. 31. N 1. P. 44—46.
  56. Lasky S. G. Geology and ore deposits of the Bayard area, Central Mining District, New Mexico. USGS Bulletin N 870. 1936. 144 p.
  57. Laufek F., Skála R., Haloda J., Císařová I. Crystal structure of vanadinite: Refinement of anisotropic displacement parameters. J. Czech Geol. Soc. 2006. Vol. 51. N 3—4. P. 271—275.
  58. Lietz J. Beiträge zur Kenntnis der Pyromorphit — Mimetesit — Vanadinit — Gruppe. Z. Krist. — Cryst. Mater. 1931. Vol. 77. N 1—6. P. 437—498.
  59. Livingstone A. Analyses of calcian phosphatian vanadinite, and apatite high in lead, from Wanlockhead, Scotland. J. Russell Soc. 1994. Vol. 5. N 2. P. 124—126.
  60. Longchambon L., Longchambon H. Sur la vanadinite d`Hérival (Vosges). Comptes rendus hebdomadaires des séances de l’Académie des sciences. 1932. Vol. 195. N 2 (juillet–décembre). P. 1397—1398.
  61. Magna T., Viladkar S., Rapprich V., Pour O., Hopp J., Čejková B. Nb–V-enriched sövites of the northeastern and eastern part of the Amba Dongar carbonatite ring dike, India — A reflection of post-emplacement hydrothermal overprint? Geochemistry. 2020. Vol. 80. N 1. Paper 125534.
  62. Malofeeva L. P. New data on vanadinite from oxidation zone of Berezovskoe gold deposit (Middle Urals). In: Metallogeny of ancient and modern oceans-99. Ore-content of hydrothermal systems: materials of the Fifth students’ scientific school. 1999. P. 215—218.
  63. Markl G., Marks M. A. W., Holzäpfel J., Wenzel T. Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwarzwald mining district, SW Germany. Amer. Miner. 2014. Vol. 99. N 4. P. 1133—1146.
  64. Masaoka M., Kyono A. Single crystal growth of lead vanado-chlorapatite Pb 5 (VO 4 ) 3 Cl using CsCl flux method. Materials Letters. 2006. Vol. 60. P. 3922—3926.
  65. McAllister J. F. Geology of mineral deposits in the Ubehebe Peak quadrangle, Inyo County, California. California Division of Mines and Geology. Special Report no. 42. 1955. 63 p.
  66. Minerals of Uzbekistan. Vol. III. Arsenates. Vanadates. Silicates (nesosilicates, cyclosilicates, inosilicates, phyllosilicates). Tashkent: Fan Publishing, 1976. 372 p. (in Russian).
  67. Nakamura M., Oqmhula K., Utimula K., Eguchi M., Oka K., Hongo K., Maezono R., Maeda K. Light absorption properties and electronic band structures of lead-vanadium oxyhalide apatites Pb 5 (VO 4 ) 3 X (X = F, Cl, Br, I). Chemistry — An Asian Journal. 2020. Vol. 15. N 4. P. 540—545.
  68. Newby H. P. Rare-earth elements in pyromorphite-group minerals. PhD thesis. London: University of London, 1981. 108 p.
  69. Okudera H. Relationships among channel topology and atomic displacements in the structures of Pb 5 (BO 4 ) 3 Cl with B= P (pyromorphite), V (vanadinite), and As (mimetite). Amer. Miner. 2013. Vol. 98. N 8—9. P. 1573—1579.
  70. Pasero M., Kampf A. R., Ferraris C., Pekov I. V., Rakovan J., White T. J. Nomenclature of the apatite supergroup minerals. Eur. J. Miner. 2010. Vol. 22. N 2. P. 163—179.
  71. Pekov I. V., Agakhanov A. A., Zubkova N. V., Koshlyakova N. N., Shchipalkina N. V., Sandalov F. D., Yapaskurt V. O., Turchkova A. G., Sidorov E. G. Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russian Geol. Geophys. 2020. Vol. 61. N 5—6. P. 675—688.
  72. Penfield S. L. Crystallized vanadinite from Arizona and New Mexico. Amer. J. Sci. 1886. Vol. s3—32. N 192. P. 441—443.
  73. Pizzala H., Caldarelli S., Eon J-G., Rossi A. M., Laurencin D., Smith M. E. A solid-state NMR study of lead and vanadium substitution into hydroxyapatite. J. Amer. Chem. Soc. 2009. Vol. 131. N 14. P. 5145—5152.
  74. Rammelsberg C. Ueber die Vanadinerze aus dem Staat Córdoba in Argentinien. Z. Deutschen Geologischen Gesellschaft. 1880. Vol. 32. N 4. P. 708—713.
  75. Rookwell G. J. XIII. Indes to the Literature of Vanadium, 1801—1877. Annals of the New York Acad. Sci. 1879. Vol. 1. N 1. P 133—145.
  76. Rose G. Ueber das Vanadinbleierz von Beresow im Ural. Annalen der Physik und Chemie. 1833. Vol. 105. N 11. P. 455—458.
  77. Rouse R. C., Dunn P. J., Peacor D. R. Hedyphane from Franklin, New Jersey and Lângban, Sweden: cation ordering in an arsenate apatite. Amer. Miner. 1984. Vol. 69. N 9—10. P. 920—927.
  78. Scaini G. Endlichite del Sasso di San Defendente. Notizie Gruppo Mineralogico Lombardo. 1976. Vol. 7. N 1. P. 22—23.
  79. Silayev V. I., Chaykovskiy I. I., Rakin V. I., Philippov V. N. Vanadinite in supergene zone of Saranovskoe chromite deposit. On the problem of mineral-geochemical transformations during hypergenesis. Uralian Geol. J. 2002. Vol. 5. N 29. P. 129—141 (in Russian).
  80. Silayev V. I., Proskurin V. F., Golubeva I. I., Remizov D. N., Philippov V. N., Lyutoyev V. P., Simakova Yu. S. Penolites — a new type of endogenous rocks (Belkovsky Island, Russia). Bull. Perm University. Geology. 2019. Vol. 18. N 2. P. 125—147 (in Russian).
  81. Solecka U., Bajda T., Topolska J., Zelek-Pogudz S., Manecki M. Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochim. Acta Part A: Molecular and Biomolecular Spectr. 2018. Vol. 190. P. 96—103.
  82. Song H., Liu J., Cheng H. Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: Implications for semi-quantitative estimation of As and V contents in apatite. Spectrochim. Acta Part A: Molecular and Biomolecular Spectr. 2018. Vol. 188. P. 488—494.
  83. Stennett M. C., Pinnock I. J., Hyatt N. C. Rapid microwave synthesis of Pb 5 (VO 4 ) 3 X (X = F, Cl, Br and I) vanadinite apatites for the immobilisation of halide radioisotopes. MRS Online Proceedings Library. 2012. Vol. 1475. P. 221—226.
  84. Struve H. Chemical decomposition of vanadinite, pyromorphite and mimetite. Gornyj Zhurnal. 1856. N 12. P. 305—330 (in Russian).
  85. Struve H. Ueber die Zusammensetzung des Vanadinits, Pyromorphits und Mimetesits. Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St. Petersburg (jahrgang 1857—1858). 1858. P. 1—20.
  86. Stugard F. Jr., Klinger F. K. Tiger Eye No. 1 uranium prospect, Sevier County, Utah. Trace Elements Memorandum Report N 164. 1950. 6 p.
  87. Szełęg E., Janeczek J., Juroszek R., Danila M. Mimetite and polymineralic mimetite-pyromorphitevanadinite single crystals from the Sowie Mts, Poland. Mineralogia. 2024. Vol. 55. N 1. P. 48—59.
  88. Topolska J., Puzio B., Borkiewicz O., Sordyl J., Manecki M. Solubility product of vanadinite Pb 5 (VO 4 ) 3 Cl at 25 °C — a comprehensive approach to incongruent dissolution modeling. Minerals. 2011. Vol. 11. N 135. P. 1—13.
  89. Trotter J., Barnes W. H. The structure of vanadinite. Canad. Miner. 1958. Vol. 6. N 2. P. 161—173.
  90. Turner R. A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Miner. Mag. 2006. Vol. 70. N 6. P. 629—653.
  91. Turner R., Rumsey M. S. The minerals of the Mendip Hills and their relationships. J. Russell Soc. 2010. Vol. 13. P. 3—46.
  92. Vitovskaya I. V. Mineral composition and behavior of trace elements in the supergene zone of Akchagyl and Kyzyl-Espe deposits. Trudy IGEM RAN. 1962. Vol. 75. 132 p. (in Russian).
  93. von Humboldt A. Vermischte geologisch, mineralogische und chemische Notizen. Neues allgemeines. J. Chemie. 1803. Vol. 2. N 1. P. 691—696.
  94. Weeks M. E. The scientific contributions of Don Andres Manuel del Rio. J. Chem. Education. 1935. Vol. 12. N 4. P. 161—166.
  95. Weinschenk E. Beiträge zur Mineralsynthese. Z. Krist. — Cryst. Mater. 1890. Vol. 17. N 1—6. P. 486—504.
  96. White G. S. Vanadinite from Touissit, Morocco, and comments on Endlichite. Miner. Record. 1984. Vol. 16. N 6. P. 347—350.
  97. Yanishevskij E. M. About co-occurrence of molybdenum and vanadium in the oxidized zone of ore deposits (Kzyl-Espe deposit). Problems of the Soviet Geology. 1934. Vol. 1. N 2. P. 135—146 (in Russian).
  98. Yanishevskij E. M. Lead-vanadium deposit Suleiman-Sai in Kazakhstan. Proc. Main Geological Exploration Office of VSNKh USSR. 1931. Vol. 109. 34 p. (in Russian).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Variations in P and As contents in vanadinite (literature data, grouped by geography). 1 — Urals (Berezovskoe, Sverdlovskoe, and Trebiatskoe deposits); 2 — USA; 3 — Great Britain and Ireland; 4 — other localities (Austria, Argentina, Germany, India, Italy, Kazakhstan, Morocco, Slovakia, South Africa, Sweden, Tunisia, and Uzbekistan). References for the vanadinite analyzes used in diagram are given in Appendix 2.

下载 (134KB)
3. Fig. 2. Variations in P and As contents in vanadinite specimens from localities in the CIS (our data). 1 — Berezovskoe deposit, Middle Urals; 2 — Suleiman-Sai deposit, Kazakhstan; 3 — Kyzyl-Espe deposit, Kazakhstan; 4 — Sidzhak ore occurrence, Uzbekistan.

下载 (118KB)
4. Fig. 3. Variations in P and As contents in vanadinite and V-rich mimetite specimens from localities in foreign countries (our data). 1 — Mibladen, Morocco; 2 — Touissit, Morocco; Djebel Mahseur, Morocco; Los Lamentos, Chihuahua, Mexico; Venus mine, Argentina; 3 — Pure Potential mine, Arizona, USA; 4 — Puzzler mine, Arizona, USA; 5 — other localities in the USA (Arizona and New Mexico); Abenab mine, Namibia; 6 — M`Fouati, Republic of Congo; 7 — Bad Bleiberg, Carinthia, Austria. The dotted line separates compositional fields of vanadinite (> 1.5 apfu V5+) and mimetite (> 1.5 apfu As5+).

下载 (182KB)
5. Fig. 4. Ca and P contents ratio in vanadinite from Suleiman-Sai and Kyzyl-Espe deposits, both in Kazakhstan (our data).

下载 (140KB)
6. Fig. 5. Variations in V, P and As contents in vanadinite: literature data (blue dots) and our data (red dots).

下载 (136KB)
7. Appendix 1
下载 (437KB)
8. Appendix 2
下载 (213KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».